上一段十级楼梯,规定每一步只能上1级或两级,问有多少种不同的走法?
1个回答
关注
展开全部
:最后走到第十阶,可能是从第八阶直接上去,也可以从第九阶上去,设上n级楼梯的走法是a(n),则a(n)的值与等于a(n-1)与a(n-2)的值的和,得到关于走法的关系式a(n)=a(n-1)+a(n+2),这样可以计算出任意台阶数的题目.
解答:解:∵最后走到第十阶,可能是从第八阶直接上去,也可以从第九阶上去,
∴设上n级楼梯的走法是a(n),则a(n)的值与等于a(n-1)与a(n-2)的值的和,
a(n)=a(n-1)+a(n+2)
∵一阶为1种走法:a(1)=1
二阶为2种走法:a(2)=2
∴a(3)=1+2=3
a(4)=2+3=5
a(5)=3+5=8
a(6)=5+8=13
a(7)=8+13=21
a(8)=13+21=34
a(9)=21+34=55
a(10)=34+55=89
故答案为:89.
咨询记录 · 回答于2022-04-18
上一段十级楼梯,规定每一步只能上1级或两级,问有多少种不同的走法?
您好,您的问题我已经看到了,正在整理答案,请稍等一会儿哦~
:最后走到第十阶,可能是从第八阶直接上去,也可以从第九阶上去,设上n级楼梯的走法是a(n),则a(n)的值与等于a(n-1)与a(n-2)的值的和,得到关于走法的关系式a(n)=a(n-1)+a(n+2),这样可以计算出任意台阶数的题目.解答:解:∵最后走到第十阶,可能是从第八阶直接上去,也可以从第九阶上去,∴设上n级楼梯的走法是a(n),则a(n)的值与等于a(n-1)与a(n-2)的值的和,a(n)=a(n-1)+a(n+2)∵一阶为1种走法:a(1)=1二阶为2种走法:a(2)=2∴a(3)=1+2=3a(4)=2+3=5a(5)=3+5=8a(6)=5+8=13a(7)=8+13=21a(8)=13+21=34a(9)=21+34=55a(10)=34+55=89故答案为:89.