怎么证明直径所对的圆周角是直角
1个回答
展开全部
如图:AB是圆O的直径,C是圆上一点。
连接OC,
由圆的性质,各条半径都相等可得:OC=OA=OB
此时三角形AOC与三角形BOC都是等腰三角形。
所以∠A=∠ACO,∠BCO=∠B
由三角形内角和为180度,
所以∠A+∠B+∠ACO+∠BCO=180º
由此可得:2(∠ACO+∠BCO_)=2∠ABC=180º
所以∠ACB=90º
扩展资料
圆周角定理:一条弧所对圆周角等于它所对圆心角的一半
证明:
已知在⊙O中,∠BOC与圆周角∠BAC同对弧BC,求证:∠BOC=2∠BAC.
证明:
情况1:当圆心O在∠BAC的一边上时,即A、O、B在同一直线上时:
∵OA、OC是半径
解:∴OA=OC
∴∠BAC=∠ACO(等边对等角)
∵∠BOC是△AOC的外角
∴∠BOC=∠BAC+∠ACO=2∠BAC
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询