计算?Ω(x2+y2)dxdydz,其中Ω是由曲面x2+y2=2z及平面z=2所围成的有界闭区域
1个回答
展开全部
结果为:16π/3
解题过程如下(因有专有公式,故只能截图):
扩展资料
求有界闭区域的方法:
设OABC是不共面的四点 则对空间任意一点P 都存在唯一的有序实数组(x,y,z)。
使得OP=xOA+yOB+zOC {OP,OA,OB,OC均表示向量} 说明:若x+y+z=1 则PABC四点共面 (但PABC四点共面的时候,若O在平面ABP内,则x+y+z不一定等于1,即x+y+z=1 是P.A.B.C四点共面的充分不必要条件)。
空间一点P位于平面MAB内的充要条件是存在有序实数对x.y,使 MP=xMA+yMB {MP MA MB 都表示向量} 或对空间任一定点O,有OP=OM+xMA+yMB {OP,OM,MA,MB表示向量}。
若f(x)有最小正周期T*,那么f(x)的任何正周期T一定是T*的正整数倍。若T1、T2是f(x)的两个周期,且T1/T2是无理数,则f(x)不存在最小正周期。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询