怎么用极坐标法计算曲线积分

 我来答
mscheng19
2022-12-17 · TA获得超过1.3万个赞
知道大有可为答主
回答量:3835
采纳率:100%
帮助的人:2216万
展开全部
x的范围是0<=x<=2,0<=y<=根号(2x-x^2),平方地x^2+y^2=2x,因此画出图形可知是
x^2+y^2=2x的上半圆周与x轴包围区域。
变为极坐标后,x=rcosa,y=rsina,
则是r^2=2rcosa,即r=2cosa,因为r>=0,故cosa>=0,再由y>=0,得sina>=0,因此
0<=a<=pi/2,故0<=r<=2cosa。
积分化为
积分(从0到pi/2)da积分(从0到2cosa)f(rcosa,rsina)rdr
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式