
已知定义在R上的可导函数y=f(x)的导函数为f′(x),满足f(x)
已知定义在R上的可导函数y=f(x)的导函数为f′(x),满足f(x)<f′(x),且f(0)=2,则不等式f(x)ex>2的解集为()A.(-∞,0)B.(0,+∞)C...
已知定义在R上的可导函数y=f(x)的导函数为f′(x),满足f(x)<f′(x),且f(0)=2,则不等式f(x)ex>2的解集为( )A.(-∞,0)B.(0,+∞)C.(-∞,2)D.(2,+∞)
展开
1个回答
展开全部
解答:解:设g(x)=
f(x)
ex
,
则g'(x)=
f′(x)ex-f(x)ex
[ex]2
=
f′(x)-f(x)
ex
,
∵f(x)<f′(x),
∴g'(x)<0,即函数g(x)单调递减.
∵f(0)=2,
∴g(0)=
f(0)
e0
=f(0)=2,
则不等式
f(x)
ex
>2等价为
f(x)
ex
>
f(0)
e0
,
即g(x)>g(0),
∵函数g(x)单调递减.
∴x<0,
∴不等式
f(x)
ex
>2的解集为(-∞,0),
故选:A.
f(x)
ex
,
则g'(x)=
f′(x)ex-f(x)ex
[ex]2
=
f′(x)-f(x)
ex
,
∵f(x)<f′(x),
∴g'(x)<0,即函数g(x)单调递减.
∵f(0)=2,
∴g(0)=
f(0)
e0
=f(0)=2,
则不等式
f(x)
ex
>2等价为
f(x)
ex
>
f(0)
e0
,
即g(x)>g(0),
∵函数g(x)单调递减.
∴x<0,
∴不等式
f(x)
ex
>2的解集为(-∞,0),
故选:A.

2022-08-05 广告
苏州蓝晓生物科技有限公司。标准化核心产品:公司拥有完整的琼脂糖介质、葡聚糖介质、聚甲基丙烯酸酯介质生产线,年产分离介质50000L,产品质量稳定并达到国际领先水平。核心优势:公司核心技术人员拥有近二十年不同基质的基球开发和官能化的丰富技术经...
点击进入详情页
本回答由苏州蓝晓生物科技有限公司_提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询