问一道数学题,如图
展开全部
延长CH于BD交于点E
∵BH是∠CBA的角平分线
∴∠CBH=∠HBA
∵BH⊥CE于H
∴∠CHB=∠EHB=90°
在△CHB和△BHE中
∵∠CHB=∠EHB
BH=BH
∠HBE=∠HBC
∴△CHB≌△EHB
∴CH=EH
∴CE=2CH
∵∠CAB=∠CHB
∠CDH=∠ADB
∴∠ECA=∠HBE
∵△CAB是等腰三角形
∴CA=BA
在△CEA和△BDA中
∵∠HDE=∠ECA
CA=BA
∠CAB=∠CAE
∴△CAE≌△BAD
∴BD=CE
∵CE=2CH
∴BD=2CH
∵BH是∠CBA的角平分线
∴∠CBH=∠HBA
∵BH⊥CE于H
∴∠CHB=∠EHB=90°
在△CHB和△BHE中
∵∠CHB=∠EHB
BH=BH
∠HBE=∠HBC
∴△CHB≌△EHB
∴CH=EH
∴CE=2CH
∵∠CAB=∠CHB
∠CDH=∠ADB
∴∠ECA=∠HBE
∵△CAB是等腰三角形
∴CA=BA
在△CEA和△BDA中
∵∠HDE=∠ECA
CA=BA
∠CAB=∠CAE
∴△CAE≌△BAD
∴BD=CE
∵CE=2CH
∴BD=2CH
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
延长BA,CH交于点E
因为 ∠A=90°,∠ACB=45°
所以 角ACB=角ABC=45度
所以 AB=AC
因为 角A=90度,CH垂直于BD
所以 角ABD=角ACE,角BAD=角CAE=90度
所以 三角形BAD全等于三角形CAE
所以 BD=CE
因为 BD平分∠CBA,CH垂直于BD
所以 CH=HE
所以 CE=2CH
因为 BD=CE
所以 BD=2CH
因为 ∠A=90°,∠ACB=45°
所以 角ACB=角ABC=45度
所以 AB=AC
因为 角A=90度,CH垂直于BD
所以 角ABD=角ACE,角BAD=角CAE=90度
所以 三角形BAD全等于三角形CAE
所以 BD=CE
因为 BD平分∠CBA,CH垂直于BD
所以 CH=HE
所以 CE=2CH
因为 BD=CE
所以 BD=2CH
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
证明:
因为tanBCH=tanπ3/8=BH/CH
tanDCH=tanπ/8=DH/CH=(BH-BD)/CH
又tanπ3/8=﹙sin3π/8﹚/﹙cos3π/8﹚
=sin(π/2-π/8 )/cos(π/2 -π/8 )
=[(cosπ/8) /(sinπ/8) ]
tanπ/8=(sinπ/8) /(cosπ/8)
所以tanπ3/8-tanπ/8=[cos^2π/8 -sin^2π/8 ]/[sinπ/8 *cosπ/8 ]
=2[cosπ/4 ]/[sinπ/4 ]=2
所以BH/CH-(BH-BD)/CH=BD/CH=2
所以BD=2CH
因为tanBCH=tanπ3/8=BH/CH
tanDCH=tanπ/8=DH/CH=(BH-BD)/CH
又tanπ3/8=﹙sin3π/8﹚/﹙cos3π/8﹚
=sin(π/2-π/8 )/cos(π/2 -π/8 )
=[(cosπ/8) /(sinπ/8) ]
tanπ/8=(sinπ/8) /(cosπ/8)
所以tanπ3/8-tanπ/8=[cos^2π/8 -sin^2π/8 ]/[sinπ/8 *cosπ/8 ]
=2[cosπ/4 ]/[sinπ/4 ]=2
所以BH/CH-(BH-BD)/CH=BD/CH=2
所以BD=2CH
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
延长CH BA交与O
BH平分∠CAB CH⊥BH 故△CBO是等腰三角形 CO=2CH
RT△OAC和RT△DAB中 ∠HCD=∠ABD AC=AB ∠OAC=∠CAB
它们全等 故BD=CO=2CH
BH平分∠CAB CH⊥BH 故△CBO是等腰三角形 CO=2CH
RT△OAC和RT△DAB中 ∠HCD=∠ABD AC=AB ∠OAC=∠CAB
它们全等 故BD=CO=2CH
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询