设m,n是正整数,满足m+n>mn,给出以下四个结论:①m,n都不等于1;②m,n都不等于2;③m,n都大于1;④

设m,n是正整数,满足m+n>mn,给出以下四个结论:①m,n都不等于1;②m,n都不等于2;③m,n都大于1;④m,n至少有一个等于1.其中正确的结论是()A.①B.②... 设m,n是正整数,满足m+n>mn,给出以下四个结论:①m,n都不等于1;②m,n都不等于2;③m,n都大于1;④m,n至少有一个等于1.其中正确的结论是(  )A.①B.②C.③D.④ 展开
 我来答
年泽BAf5a
2014-12-20 · TA获得超过270个赞
知道答主
回答量:119
采纳率:0%
帮助的人:140万
展开全部
如果当m=1,n=2,满足m+n>mn,
所以:①m,n都不等于1;②m,n都不等于2;③m,n都大于1;这些说法都不可能.
故①②③错误;
再来证明第四个命题:
证明:∵m+n>mn,
∴mn-m-n<0,
∵mn-m-n=(m-1)(n-1)-1,
∴(m-1)(n-1)-1<0,
即(m-1)(n-1)<1.
∵m,n是正整数,
∴(m-1)(n-1)=0,
故m和n中至少有一个为1.
故答案④m,n至少有一个等于1正确,
故选:D.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式