二重积分的极坐标表达式求解
如图所示,这个图中箭头所指的rdr是什么意思?第一个积分表示的是怎样的一个面积?rdr中式子第一个r是不是多出来的?...
如图所示,这个图中箭头所指的rdr是什么意思?第一个积分表示的是怎样的一个面积?rdr中式子第一个r是不是多出来的?
展开
7个回答
展开全部
直角坐标和极坐标转换公式就是这样的。dxdy=rdrdθ,看看教材,教材里有推导。
追问
rdr是什么意思
追答
r是新的被积函数的一个因子,即被积函数由f(x,y)变成 rf(rcosθ,rsinθ)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
这牵扯到对极坐标的理解:首先你要理解积分其实是“微元法”(就是把图形切的足够小,假设每一个的面积都相同,然后将他们的面积累加起来的过程叫积分)
假设你画一条极轴,在极轴上方画一个圆,现在你对这个圆进行二重积分:
第一步:由极点引射线(逆时针)第一次与圆相切时,与极轴的夹角为a,然后接着引射线切圆,最后离开圆时记与极轴的夹角为b,这就是为什么一重积分限为a~b(从夹角a积分到夹角b)
第二步:同样由极点向外围画弧线,用无数条弧线去切圆(形象说:就是),这样你第一步的切线一定和第二步的弧线一定可以近似交一个小矩形出来,这个小矩形的面积为rdrdθ(其中rdθ为矩形长,dr为矩形宽)
图参照上面答案去看,我地铁里没法给你画
假设你画一条极轴,在极轴上方画一个圆,现在你对这个圆进行二重积分:
第一步:由极点引射线(逆时针)第一次与圆相切时,与极轴的夹角为a,然后接着引射线切圆,最后离开圆时记与极轴的夹角为b,这就是为什么一重积分限为a~b(从夹角a积分到夹角b)
第二步:同样由极点向外围画弧线,用无数条弧线去切圆(形象说:就是),这样你第一步的切线一定和第二步的弧线一定可以近似交一个小矩形出来,这个小矩形的面积为rdrdθ(其中rdθ为矩形长,dr为矩形宽)
图参照上面答案去看,我地铁里没法给你画
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询