若实数a.b.c满足a^2+b^2+c^2=9,代数式(a-b)^2+(b-c)^2+(c-a)^2最大值是多少?

帮帮忙... 帮帮忙 展开
 我来答
茂桐富察通
2020-01-04 · TA获得超过3806个赞
知道大有可为答主
回答量:3117
采纳率:26%
帮助的人:261万
展开全部
已知a^2+b^2+c^2=9,求(a-b)^2+(b-c)^2+(c-a)^2的最大值;
解:展开,得
(a-b)^2+(b-c)^2+(c-a)^2
=2(a^2+b^2+c^2)-(2ab+2bc+2ca)
=2(a^2+b^2+c^2)-[(a+b+c)^2-(a^2+b^2+c^2)]
=3(a^2+b^2+c^2)-(a+b+c)^2
=27-(a+b+c)^2
要使上式取得最大值,就要使(a+b+c)^2最小,但(a+b+c)^2≥0,最小为0,所以
(a-b)^2+(b-c)^2+(c-a)^2
≤27
最大值为27。
注:最大值当a+b+c=0时取得
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式