f(x)=-x²-1,x∈[-2,5]的奇偶性

1个回答
展开全部
摘要 偶函数的定义域D关于原点对称是这个函数成为偶函数的必要非充分条件.  
例如:f(x)=x^2,x∈R(f(x)等于x的平方,x属于一切实数),此时的f(x)为偶函数
.f(x)=x^2,x∈(-2,2](f(x)等于x的平方,-2
函数f(x)=-x²+1,x属于[-1,2],即定义域不对称,
所以它是非奇非偶函数
咨询记录 · 回答于2021-12-08
f(x)=-x²-1,x∈[-2,5]的奇偶性
你好,你的问题我已经看到了,正在整理答案,请稍等一会哦,前面有很多人在等待!
亲很高兴为你解答:
偶函数的定义域D关于原点对称是这个函数成为偶函数的必要非充分条件.  例如:f(x)=x^2,x∈R(f(x)等于x的平方,x属于一切实数),此时的f(x)为偶函数.f(x)=x^2,x∈(-2,2](f(x)等于x的平方,-2
如果您对我的服务满意 麻烦给个五星评价吧~
已赞过
你对这个回答的评价是?
评论 收起
下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消