∫(tan^(5)(x)*sec^(3)(x))dx
1个回答
展开全部
∫ tan^5xsec^3x dx
= ∫ tan^4xsec^2x (secxtanx dx)
= ∫ (sec^2x - 1)^2sec^2x d(secx)
= ∫ (sec^4x - 2sec^2x + 1)sec^2x d(secx)
= ∫ (sec^6x - 2sec^4x + sec^2x) d(secx)
= (1/7)sec^7x - (2/5)sec^5x + (1/3)sec^3x + C
= ∫ tan^4xsec^2x (secxtanx dx)
= ∫ (sec^2x - 1)^2sec^2x d(secx)
= ∫ (sec^4x - 2sec^2x + 1)sec^2x d(secx)
= ∫ (sec^6x - 2sec^4x + sec^2x) d(secx)
= (1/7)sec^7x - (2/5)sec^5x + (1/3)sec^3x + C
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询