向量有什么定理?
1个回答
展开全部
奔驰定理,因其几何表示酷似奔驰的标志得来,具塌顷体内并宽容如下:有△ABC,点p为该三角形内的一点(在三团蔽陆角形边上为定比分点公式)。那么则有SA·PA + SB·PB + SC·PC =0,其中:SA为△BCP的面积,SB为△ACP的面积,SC为△ABP的面积。
这个也很好证明的,简单的一个就是面积法。用三角形面积公式带入,约去三条线段长度之积,得到三个单位向量的关系,将其放入单位圆中。只需要建立平面直角坐标系,利用三角函数定义、三角恒等变换公式、向量坐标运算就可以轻松证明了。
扩展资料
“奔驰定理”可以称得上是平面向量中最优美的一个结论,由于这个定理和奔驰的logo很相似,人们把其称为奔驰定理。
奔驰定理是有关三角形四心向量式的完美统一表示,尤其在解决与三角形的四心相关的问题时有着决定性的基石作用。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
富港检测技术(东莞)有限公司_
2024-04-02 广告
2024-04-02 广告
正弦振动多用于找出产品设计或包装设计的脆弱点。看在哪一个具体频率点响应最大(共振点);正弦振动在任一瞬间只包含一种频率的振动,而随机振动在任一瞬间包含频谱范围内的各种频率的振动。由于随机振动包含频谱内所有的频率,所以样品上的共振点会同时激发...
点击进入详情页
本回答由富港检测技术(东莞)有限公司_提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询