arctanx的积分怎么算?

 我来答
滚雪球的秘密
高粉答主

2022-11-22 · 醉心答题,欢迎关注
知道大有可为答主
回答量:4152
采纳率:100%
帮助的人:107万
展开全部

arctanx的积分是xarctanx-1/2ln(1+x²)+C。

解:

可以用分部积分法:

∫arctanxdx

=xarctanx-∫xdarctanx

=xarctanx-∫x/(1+x²)dx

=xarctanx-1/2ln(1+x²)+C

所以arctanx的积分是xarctanx-1/2ln(1+x²)+C。

扩展资料:

1、常用几种积分公式:

(1)∫e^xdx=e^x+c

(2)∫0dx=c

(3)∫x^udx=(x^(u+1))/(u+1)+c

(4)∫1/xdx=ln|x|+c

(5)∫sinxdx=-cosx+c

(6)∫a^xdx=(a^x)/lna+c

2、一般定理

定理1:设f(x)在区间[a,b]上连续,那么f(x)在[a,b]上可积。

定理2:设f(x)区间[a,b]上有界,且只有有限个间断点,那么f(x)在[a,b]上可积。

定理3:设f(x)在区间[a,b]上单调,那么f(x)在[a,b]上可积。



已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式