已知 椭圆方程x2/9+y2/25=1,点P(1,1)是椭圆的弦AB的中点,求AB所在的直线方程

 我来答
大仙1718
2022-07-29 · TA获得超过1283个赞
知道小有建树答主
回答量:171
采纳率:98%
帮助的人:62.9万
展开全部
设AB两点坐标为(X1,Y1)(X2,Y2)
(x1)2/9+(y1)2/25=1 .1
(x2)2/9+(y2)2/25=1.2
点P(1,1)是椭圆的弦AB的中点,所以
(X1+X2)/2=1 .3
(Y1+Y2)/2=1.4
1式-2式得(直接用平方差公式):
(X1-X2)(X1+X2)/9 +(Y1-Y2)(Y1+Y2)/25=0
把3、4式代入上式整理得:(Y1-Y2)/(X1-X2)=-25/9 此即为直线AB斜率.又知P(1,1),点斜式得直线AB的方程,整理后为9y+25x-34=0
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式