求证:当x= arctanx时f(x)=0

 我来答
一个人郭芮
高粉答主

2022-12-26 · GR专注于各种数学解题
一个人郭芮
采纳数:37941 获赞数:84695

向TA提问 私信TA
展开全部
带佩亚诺余项的泰勒公式可以表示为:
f(x)=f(x0)+(x-x0) * f'(x0)/1! + (x-x0)^2 * f''(x0)/2! +… +(x-x0)^n * f^(n) (x0)/n! +o((x-x0)^n)
而x0→0时,
f(x)=f(0)+ x * f'(0)/1! + x^2 * f''(0)/2! +… +x^n * f^(n) (0)/n! +o(x^n)
显然当f(x)=arctanx时,
f(0)=0
f '(x)=1/(1+x^2),f ''(x)= -2x/(1+x^2)^2,
f '''(x)= -2/(1+x^2)^2 - 2x *(-2) * (2x)/(1+x^2)^3 = (6x^2-2)/(1+x^2)^3
所以当x0→0时,
f '(0)=1,f ''(0)=0,f '''(0)= -2

于是
arctanx=arctan0 + x * f'(0)/1! + x^2 * f''(0)/2! + x^3 * f''(0)/3! + o(x^3)
=0+ x +0*x^2/2 -2*x^3/6 +o(x^3)
= x - 1/3*x^3 + o(x^3)
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式