x趋于0, ln(1/ x)的x次方趋于0,为什么?
展开全部
将(1+1/x)的x次方配成(1+1/x)的x次方再乘一个x时,外面这个x在x→oo时极限不存在,所以得取对数求极限。
证明:x趋近于无穷小ln(x+1)/x用洛必达法求解
x趋近于无穷小[1/(x+1)]/1=1
将x趋近于无穷小ln(x+1)/x=1
转换一下即
x趋近于无穷小ln(1+x)的1/x次方=1
再转换一下即
x趋近于无穷大ln(1+1/x)的x次方=1
即x趋近于无穷大ln(1+1/x)的x次方=e
一个数的零次方
任何非零数的0次方都等于1。
原因如下:
通常代表3次方
5的3次方是125,即5×5×5=125
5的2次方是25,即5×5=25
5的1次方是5,即5×1=5
由此可见,n≧0时,将5的(n+1)次方变为5的n次方需除以一个5,所以可定义5的0次方为:
5 ÷ 5 = 1
极限函数的意义:
和实数运算的相容性,譬如:如果两个数列{xn} ,{yn} 都收敛,那么数列{xn+yn}也收敛,而且它的极限等于{xn} 的极限和{yn} 的极限的和。
与子列的关系,数列{xn} 与它的任一平凡子列同为收敛或发散,且在收敛时有相同的极限;数列{xn} 收敛的充要条件是:数列{xn} 的任何非平凡子列都收敛。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询