高二年级数学必修五知识点总结

 我来答
今天上岸了吗2333
2023-03-07 · TA获得超过302个赞
知道小有建树答主
回答量:902
采纳率:100%
帮助的人:90.3万
展开全部

1.高二年级数学必修五知识点总结


  基本初等函数有哪些

  基本初等函数包括以下几种:

  (1)常数函数y=c(c为常数)

  (2)幂函数y=x^a(a为常数)

  (3)指数函数y=a^x(a>0,a≠1)

  (4)对数函数y=log(a)x(a>0,a≠1,真数x>0)

  (5)三角函数以及反三角函数(如正弦函数:y=sinx反正弦函数:y=arcsinx等)

  基本初等函数性质是什么

  幂函数

  形如y=x^a的函数,式中a为实常数。

  指数函数

  形如y=a^x的函数,式中a为不等于1的正常数。

  对数函数

  指数函数的反函数,记作y=logaax,式中a为不等于1的正常数。指数函数与对数函数之间成立关系式,logaax=x。

  三角函数

  即正弦函数y=sinx,余弦函数y=cosx,正切函数y=tanx,余切函数y=cotx,正割函数y=secx,余割函数y=cscx(见三角学)。

2.高二年级数学必修五知识点总结


  正弦定理a/sinA=b/sinB=c/sinC=2R注:其中R表示三角形的外接圆半径

  余弦定理b2=a2+c2-2accosB注:角B是边a和边c的夹角

  圆的标准方程(x-a)2+(y-b)2=r2注:(a,b)是圆心坐标

  圆的一般方程x2+y2+Dx+Ey+F=0注:D2+E2-4F>0

  抛物线标准方程y2=2pxy2=-2pxx2=2pyx2=-2py

  直棱柱侧面积S=c*h斜棱柱侧面积S=c'*h

  正棱锥侧面积S=1/2c*h'正棱台侧面积S=1/2(c+c')h'

  圆台侧面积S=1/2(c+c')l=pi(R+r)l球的表面积S=4pi*r2

  圆柱侧面积S=c*h=2pi*h圆锥侧面积S=1/2*c*l=pi*r*l

  弧长公式l=a*ra是圆心角的弧度数r>0扇形面积公式s=1/2*l*r

  锥体体积公式V=1/3*S*H圆锥体体积公式V=1/3*pi*r2h

  斜棱柱体积V=S'L注:其中,S'是直截面面积,L是侧棱长

  柱体体积公式V=s*h圆柱体V=p*r2h

  乘法与因式分a2-b2=(a+b)(a-b)a3+b3=(a+b)(a2-ab+b2)a3-b3=(a-b(a2+ab+b2)

  三角不等式|a+b|≤|a|+|b||a-b|≤|a|+|b||a|≤b |a-b|≥|a|-|b|-|a|≤a≤|a|

  一元二次方程的解-b+√(b2-4ac)/2a-b-√(b2-4ac)/2a

  根与系数的关系X1+X2=-b/aX1*X2=c/a注:韦达定理

  判别式:

  b2-4ac=0注:方程有两个相等的实根

  b2-4ac>0注:方程有两个不等的实根

  b2-4ac<0注:方程没有实根,有共轭复数根

3.高二年级数学必修五知识点总结

  一、变量间的相关关系

  1.常见的两变量之间的关系有两类:一类是函数关系,另一类是相关关系;与函数关系不同,相关关系是一种非确定性关系.

  2.从散点图上看,点分布在从左下角到右上角的区域内,两个变量的这种相关关系称为正相关,点分布在左上角到右下角的区域内,两个变量的相关关系为负相关.

  二、两个变量的线性相关

  从散点图上看,如果这些点从整体上看大致分布在通过散点图中心的一条直线附近,称两个变量之间具有线性相关关系,这条直线叫回归直线.

  当r>0时,表明两个变量正相关;

  当r<0时,表明两个变量负相关.

  r的绝对值越接近于1,表明两个变量的线性相关性越强.r的绝对值越接近于0时,表明两个变量之间几乎不存在线性相关关系.通常|r|大于0.75时,认为两个变量有很强的线性相关性.

  三、解题方法

  1.相关关系的判断方法一是利用散点图直观判断,二是利用相关系数作出判断.

  2.对于由散点图作出相关性判断时,若散点图呈带状且区域较窄,说明两个变量有一定的线性相关性,若呈曲线型也是有相关性.

  3.由相关系数r判断时|r|越趋近于1相关性越强.

4.高二年级数学必修五知识点总结

  1.数列定义:

  如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差常用字母d表示。

  等差数列的通项公式为:an=a1+(n-1)d(1)

  前n项和公式为:Sn=na1+n(n-1)d/2或Sn=n(a1+an)/2(2)

  以上n均属于正整数。

  2.解释说明:

  从(1)式可以看出,an是n的一次函数(d≠0)或常数函数(d=0),(n,an)排在一条直线上,由(2)式知,Sn是n的二次函数(d≠0)或一次函数(d=0,a1≠0),且常数项为0。

  在等差数列中,等差中项:一般设为Ar,Am+An=2Ar,所以Ar为Am,An的等差中项,且为数列的平均数。

  且任意两项am,an的关系为:an=am+(n-m)d

  它可以看作等差数列广义的通项公式。

  3.公式:

  从等差数列的定义、通项公式,前n项和公式还可推出:a1+an=a2+an-1=a3+an-2=…=ak+an-k+1,k∈{1,2,…,n}

  若m,n,p,q∈N_,且m+n=p+q,则有am+an=ap+aq,Sm-1=(2n-1)an,S2n+1=(2n+1)an+1,Sk,S2k-Sk,S3k-S2k,…,Snk-S(n-1)k…或等差数列,等等。

  4.基本公式:

  和=(首项+末项)×项数÷2

  项数=(末项-首项)÷公差+1

  首项=2和÷项数-末项

  末项=2和÷项数-首项

  末项=首项+(项数-1)×公差

5.高二年级数学必修五知识点总结


  空间直线与直线之间的位置关系

  (1)异面直线定义:不同在任何一个平面内的两条直线

  (2)异面直线性质:既不平行,又不相交.

  (3)异面直线判定:过平面外一点与平面内一点的直线与平面内不过该店的直线是异面直线

  异面直线所成角:作平行,令两线相交,所得锐角或直角,即所成角.两条异面直线所成角的范围是(0°,90°],若两条异面直线所成的角是直角,我们就说这两条异面直线互相垂直.

  (4)求异面直线所成角步骤:

  A、利用定义构造角,可固定一条,平移另一条,或两条同时平移到某个特殊的位置,顶点选在特殊的位置上.

  B、证明作出的角即为所求角

  C、利用三角形来求角

  (5)等角定理:如果一个角的两边和另一个角的两边分别平行,那么这两角相等或互补.

  (6)空间直线与平面之间的位置关系

  直线在平面内——有无数个公共点.

  三种位置关系的符号表示:aαa∩α=Aaα

  (7)平面与平面之间的位置关系:

  平行——没有公共点;αβ

  相交——有一条公共直线.α∩β=b

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式