设函数f(x)=(sinwx+coswx)²+2cos²wx(w>0)的最小正周期为2π/3,求:(详细解题步骤)

(1)求w的值(2)若函数y=g(x)的图象是由y=f(x)的图象向右平移π/2个单位长度得到,求y=g(x)的单调增区间.... (1)求w的值
(2)若函数y=g(x)的图象是由y=f(x)的图象向右平移π/2个单位长度得到,求y=g(x)的单调增区间.
展开
atomizzare
2010-12-30 · 超过13用户采纳过TA的回答
知道答主
回答量:21
采纳率:0%
帮助的人:0
展开全部
f(x)=(sinwx+coswx)²+2cos²wx
=[(根号2)*cos(wx-π/4)]²+2cos²wx
=2*[cos²(wx-π/4)+cos²wx]
=cos(2wx-π/2)+cos2wx+2
=sin2wx+cos2wx+2
=(根号2)sin(2wx+π/4)+2

(1)最小正周期T=2π/2w=2π/3,w=3/2
(2)g(x)=(根号2)sin[3(x-π/2)+π/4]+2
=(根号2)sin(3x-5π/4)+2
2kπ-π/2≤3x-5π/4≤2kπ+π/2
解得y=g(x)的单调增区间为[2kπ/3+π/4,2kπ/3+7π/12],k取整数的每一个闭区间
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式