设f(x)在[0,a]上连续,在(0,a)内可导,切f(0)=0,f'(x)单调增加(fx的倒数) 证明f(x)/x在(0,a)上单调增
展开全部
设 0 < x < y, 用中值定理:
f(x) = f‘(x1)(x - 0) + f(0) = f'(x1)x, 0< x1 < x
f(y) = f'(x2)(y-x) + f(x), x <x2<y
因为 f'(x)单调增加, f’(x2)>f’(x1),于是:
f(y)/y = (f'(x2)(y-x) + f(x))/y
> (f'(x1)(y-x) + f'(x1)x)/y
=f’(x1)
=f(x)/x
即 f(x)/x在(0,a)上单调增
f(x) = f‘(x1)(x - 0) + f(0) = f'(x1)x, 0< x1 < x
f(y) = f'(x2)(y-x) + f(x), x <x2<y
因为 f'(x)单调增加, f’(x2)>f’(x1),于是:
f(y)/y = (f'(x2)(y-x) + f(x))/y
> (f'(x1)(y-x) + f'(x1)x)/y
=f’(x1)
=f(x)/x
即 f(x)/x在(0,a)上单调增
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询