设函数f(x)=x2+2ax+alnx.当t≥1时,不等式f(2t-1)≥2f(t)-3恒成立,则实数a的取值范 5
1个回答
展开全部
t≥1时,不等式f(2t-1)≥2f(t)-3 恒成立
<=>f(2t-1)-2f(t)+3≥0 恒成立
<=>2t^2-4t+aln((2t-1)/t^2)-2a+3≥0 恒成立
a[ln((2t-1)/t^2)-2]≥-2t^2+4t-4
易知(2t-1)/(t^2)=1/t*(2-1/t)≤1
故ln((2t-1)/t^2)-2≤-2
a[ln((2t-1)/t^2)-2]≥-2t^2+4t-4
<=>a≤(-2t^2+4t-4)/[ln((2t-1)/t^2)-2]
设g(t)=(-2t^2+4t-4)/[ln((2t-1)/t^2)-2]
g'(t)=4(1-t)[ln(2t-1)-2lnt-2+(t^2-2t+2)/(2t^2-t)]/[ln((2t-1)/t^2)-2]^2
设h(t)=4(1-t)[ln(2t-1)-2lnt-2+(t^2-2t+2)/(2t^2-t)] 则g'(t)=h(t)/[ln((2t-1)/t^2)-2]^2
h'(t)=4((1-2t)^2t^2(2lnt-ln(2t-1))+(x(10(x-1)x-7)+10)x-2)/[(1-2x)^2x^2]≥0
故h(t)≥h(1)=0
g'(t)=h(t)/[ln((2t-1)/t^2)-2]^2≥0
t≥1时g(t)单调增
g(t)≥g(1)=1
若a≤g(t)在t≥1时恒成立,则a小于g(t)在[1, +∞)上最小值
故a≤g(1)=1
故a取值范围 (-∞, 1]
<=>f(2t-1)-2f(t)+3≥0 恒成立
<=>2t^2-4t+aln((2t-1)/t^2)-2a+3≥0 恒成立
a[ln((2t-1)/t^2)-2]≥-2t^2+4t-4
易知(2t-1)/(t^2)=1/t*(2-1/t)≤1
故ln((2t-1)/t^2)-2≤-2
a[ln((2t-1)/t^2)-2]≥-2t^2+4t-4
<=>a≤(-2t^2+4t-4)/[ln((2t-1)/t^2)-2]
设g(t)=(-2t^2+4t-4)/[ln((2t-1)/t^2)-2]
g'(t)=4(1-t)[ln(2t-1)-2lnt-2+(t^2-2t+2)/(2t^2-t)]/[ln((2t-1)/t^2)-2]^2
设h(t)=4(1-t)[ln(2t-1)-2lnt-2+(t^2-2t+2)/(2t^2-t)] 则g'(t)=h(t)/[ln((2t-1)/t^2)-2]^2
h'(t)=4((1-2t)^2t^2(2lnt-ln(2t-1))+(x(10(x-1)x-7)+10)x-2)/[(1-2x)^2x^2]≥0
故h(t)≥h(1)=0
g'(t)=h(t)/[ln((2t-1)/t^2)-2]^2≥0
t≥1时g(t)单调增
g(t)≥g(1)=1
若a≤g(t)在t≥1时恒成立,则a小于g(t)在[1, +∞)上最小值
故a≤g(1)=1
故a取值范围 (-∞, 1]
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询