已知函数f(X)=a(x-1/x)-lnx,x属于R,1若a>0,求函数f(x)的单调区间

dennis_zyp
2014-01-07 · TA获得超过11.5万个赞
知道顶级答主
回答量:4万
采纳率:90%
帮助的人:2亿
展开全部
f'(x)=a(1+1/x^2)-1/x=1/x^2*(ax^2-x+a)
由f'(x)=0,得ax^2-x+a=0
△=1-4a^2=(1-2a)(1+2a)
因为a>0,所以
当1-2a<=0时,即a>=1/2时,△<=0,此时f'(x)>=0,在定义域x>0都是单调增的;
当1-2a>0时,即0<a<1/2时,△>0,有极值点x1=[1-√(1-4a^2)]/(2a),x2=[1+√(1-4a^2)]/(2a),
当0<x<x1或x>x2时,f'(x)>0,函数单调增;
当x1<x<x2时,f'(x)<0,函数单调减。
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式