如图,AB是⊙O的直径,点C在BA的延长线上,直线CD与⊙O相切于点D,弦DF⊥AB于点E,线段CD=10,连接BD(1
如图,AB是⊙O的直径,点C在BA的延长线上,直线CD与⊙O相切于点D,弦DF⊥AB于点E,线段CD=10,连接BD(1)求证:∠CDE=2∠B(2)若BD:AB=:2,...
如图,AB是⊙O的直径,点C在BA的延长线上,直线CD与⊙O相切于点D,弦DF⊥AB于点E,线段CD=10,连接BD(1)求证:∠CDE=2∠B(2)若BD:AB= :2,求⊙O的半径及弦DF的长
展开
展开全部
(1)连接OD,根据弦切角定理得∠CDE=∠EOD,再由同弧所对的圆心角是圆周 角的2倍,可得∠CDE=2∠B; (2)连接AD,根据三角函数,求得∠B=30°,则∠EOD=60°,推得∠C=30°,根据∠C的正切值,求出圆的半径,再在Rt△CDE中,利用∠C的正弦值,求得DE,从而得出DF的长. |
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询