如图,AB是⊙O的直径,点C在BA的延长线上,直线CD与⊙O相切于点D,弦DF⊥AB于点E,线段CD=10,连接BD(1

如图,AB是⊙O的直径,点C在BA的延长线上,直线CD与⊙O相切于点D,弦DF⊥AB于点E,线段CD=10,连接BD(1)求证:∠CDE=2∠B(2)若BD:AB=:2,... 如图,AB是⊙O的直径,点C在BA的延长线上,直线CD与⊙O相切于点D,弦DF⊥AB于点E,线段CD=10,连接BD(1)求证:∠CDE=2∠B(2)若BD:AB= :2,求⊙O的半径及弦DF的长 展开
 我来答
百度网友8c20c78bee1
2014-10-07 · TA获得超过115个赞
知道答主
回答量:134
采纳率:0%
帮助的人:124万
展开全部
(1)证明:连接OD.
∵直线CD与⊙O相切于点D,
∴OD⊥CD,∠CDO=90°,∠CDE+∠ODE=90°.
又∵DF⊥AB,∴∠DEO=∠DEC=90°.
∴∠EOD+∠ODE=90°,
∴∠CDE=∠EOD. 
又∵∠EOD=2∠B,
∴∠CDE=2∠B.
(2)解:连接AD.
∵AB是⊙O的直径,
∴∠ADB=90°.
∵BD:AB= :2,
∴在Rt△ADB中cosB=
∴∠B=30°. 
∴∠AOD=2∠B=60°.
又∵∠CDO=90°,
∴∠C=30°. 
在Rt△CDO中,CD=10,
∴OD=10tan30°=
即⊙O的半径为 . 
在Rt△CDE中,CD=10,∠C=30°,
∴DE=CDsin30°=5. 
∵DF⊥AB于点E,
∴DE=EF= DF.
∴DF=2DE=10.         

(1)连接OD,根据弦切角定理得∠CDE=∠EOD,再由同弧所对的圆心角是圆周
角的2倍,可得∠CDE=2∠B;
(2)连接AD,根据三角函数,求得∠B=30°,则∠EOD=60°,推得∠C=30°,根据∠C的正切值,求出圆的半径,再在Rt△CDE中,利用∠C的正弦值,求得DE,从而得出DF的长.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式