设向量a=(cos(a+β),sin(a+β)),b=(cos(a-β),sin(a-β),且a+b=(4/5,3/5)。求tana,求2cos²a/2-3sina
展开全部
tana=3/4
(2cos²a/2-3sina -1)/√2sin(a+π/4)=-5/7
由a=(cos(a+β),sin(a+β)),b=(cos(a-β),sin(a-β),且a+b=(4/5,3/5)
得cos(a+β)+cos(a-β)=2cosacosβ=4/5,sin(a+β)+sin(a-β)=2sinacosβ=3/5,两者相除得tana=3/4
(2cos²a/2-3sina -1)/√2sin(a+π/4)=(cosa-3sina)/(sina+cosa)=(1-3tana)/(tana+1)=-5/7
(2cos²a/2-3sina -1)/√2sin(a+π/4)=-5/7
由a=(cos(a+β),sin(a+β)),b=(cos(a-β),sin(a-β),且a+b=(4/5,3/5)
得cos(a+β)+cos(a-β)=2cosacosβ=4/5,sin(a+β)+sin(a-β)=2sinacosβ=3/5,两者相除得tana=3/4
(2cos²a/2-3sina -1)/√2sin(a+π/4)=(cosa-3sina)/(sina+cosa)=(1-3tana)/(tana+1)=-5/7
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询