20、如图,△ABC中,∠BAC=90°,BG平分∠ABC,GF⊥BC于点F,AD⊥BC于点D,交BG于点E,连结EF。
20、如图,△ABC中,∠BAC=90°,BG平分∠ABC,GF⊥BC于点F,AD⊥BC于点D,交BG于点E,连结EF。(1)、求证:①、AE=AG;②四边形AEFG为菱...
20、如图,△ABC中,∠BAC=90°,BG平分∠ABC,GF⊥BC于点F,AD⊥BC于点D,交BG于点E,连结EF。
(1)、求证:①、AE=AG;②四边形AEFG为菱形。
(2)、若AD=8,BD=6,求AE的长。 展开
(1)、求证:①、AE=AG;②四边形AEFG为菱形。
(2)、若AD=8,BD=6,求AE的长。 展开
展开全部
证明:(1)①∵BG平分∠ABC,
∴∠ABE=∠DBE,
∵∠ABE+∠AGE=90°,∠EBD+∠DEB=90°,∠GEA=∠BED,
∴∠AEG=∠EGA,
即AG=AE.
②∵GF⊥BC于点F,AD⊥BC于点D,BG平分∠ABC,
∴∠CFG=∠CDA=90°
∴AD∥GF,AG=GF,
又∵AG=AE,
∴AE=GF,
∴四边形AEFG是平行四边形,
∴GF=AE,AG=EF
∵AG=AE
∴AG=GF=AE=EF
∴四边形AEFG为菱形
(2)由题意可知,在Rt△ABD中,AD=8,BD=6,
所以根据勾股定理得:AB=10,
因为∠CAB=∠ADB=90°,∠ABD=∠CBA(公共角),
所以△ABC∽△DBA,
解之得x=5,
所以AE的长为5.
∴∠ABE=∠DBE,
∵∠ABE+∠AGE=90°,∠EBD+∠DEB=90°,∠GEA=∠BED,
∴∠AEG=∠EGA,
即AG=AE.
②∵GF⊥BC于点F,AD⊥BC于点D,BG平分∠ABC,
∴∠CFG=∠CDA=90°
∴AD∥GF,AG=GF,
又∵AG=AE,
∴AE=GF,
∴四边形AEFG是平行四边形,
∴GF=AE,AG=EF
∵AG=AE
∴AG=GF=AE=EF
∴四边形AEFG为菱形
(2)由题意可知,在Rt△ABD中,AD=8,BD=6,
所以根据勾股定理得:AB=10,
因为∠CAB=∠ADB=90°,∠ABD=∠CBA(公共角),
所以△ABC∽△DBA,
解之得x=5,
所以AE的长为5.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2011-01-03
展开全部
因为所以
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询