向量积,数学中又称外积、叉积,物理中称矢积、叉乘,是一种在向量空间中向量的二元运算。与点积不同,它的运算结果是一个向量而不是一个标量。并且两个向量的叉积与这两个向量和垂直。其应用也十分广泛,通常应用于物理学光学和计算机图形学中。
两个向量a和b的叉积写作a×b(有时也被写成a∧b,避免和字母x混淆)。
两个向量a和b的叉积写作a×b(有时也被写成a∧b,避免和字母x混淆)。[1]
定义
向量积可以被定义为:
模长:(在这里θ表示两向量之间的夹角(共起点的前提下)(0°≤θ≤180°),它位于这两个矢量所定义的平面上。)
方向:a向量与b向量的向量积的方向与这两个向量所在平面垂直,且遵守右手定则。(一个简单的确定满足“右手定则”的结果向量的方向的方法是这样的:若坐标系是满足右手定则的,当右手的四指从a以不超过180度的转角转向b时,竖起的大拇指指向是c的方向。)
也可以这样定义(等效):
向量积|c|=|a×b|=|a||b|sin<a,b>
即c的长度在数值上等于以a,b,夹角为θ组成的平行四边形的面积。
而c的方向垂直于a与b所决定的平面,c的指向按右手定则从a转向b来确定。
*运算结果c是一个伪向量。这是因为在不同的坐标系中c可能不同。[1]
坐标运算
设=(),=()。i,j,k分别是X,Y,Z轴方向的单位向量,则[1] :
a×b=(-)i+(-)j+(-)k,为了帮助记忆,利用三阶行列式,写成det
证明
为了更好地推导,我们需要加入三个轴对齐的单位向量i,j,k。
i,j,k满足以下特点:
i=jxk;j=kxi;k=ixj;
kxj=–i;ixk=–j;jxi=–k;
ixi=jxj=kxk=0;(0是指0向量)
由此可知,i,j,k是三个相互垂直的向量。它们刚好可以构成一个坐标系。
这三个向量的特例就是i=(1,0,0)j=(0,1,0)k=(0,0,1)。
对于处于i,j,k构成的坐标系中的向量u,v我们可以如下表示:
u=Xu*i+Yu*j+Zu*k;
v=Xv*i+Yv*j+Zv*k;
那么uxv=(Xu*i+Yu*j+Zu*k)x(Xv*i+Yv*j+Zv*k)
=Xu*Xv*(ixi)+Xu*Yv*(ixj)+Xu*Zv*(ixk)+Yu*Xv*(jxi)+Yu*Yv*(jxj)+Yu*Zv*(jxk)+Zu*Xv*(kxi)+Zu*Yv*(kxj)+Zu*Zv*(kxk)
由于上面的i,j,k三个向量的特点,所以,最后的结果可以简化为
uxv=(Yu*Zv–Zu*Yv)*i+(Zu*Xv–Xu*Zv)*j+(Xu*Yv–Yu*Xv)*k。[1]
与数量积的区别
注:向量积≠向量的积(向量的积一般指点乘)
一定要清晰地区分开向量积(矢积)与数量积(标积)。见下表。
叉积的长度|a×b|可以解释成这两个叉乘向量a,b共起点时,所构成平行四边形的面积。据此有:混合积[abc]=(a×b)·c可以得到以a,b,c为棱的平行六面体的体积。
希望我能帮助你解疑释惑。
2024-04-02 广告