求dy比dx和dy的平方比dx的平方 190
1个回答
展开全部
y + e^(x+y) - 2x = 0, 两边对 x 求导, 注意 y = y(x),
dy/dx + e^(x+y)(1+dy/dx) - 2 = 0 (1),
解得 dy/dx = [2-e^(x+y)]/[1+e^(x+y)] (2) ;
式 (1) 两边再对 x 求导, 得
d^2y/dx^2 + e^(x+y)(1+dy/dx)^2 + e^(x+y)(d^2y/dx^2) = 0
解得 d^2y/dx^2 = [-e^(x+y)(1+dy/dx)^2]/[1+e^(x+y)], 式(2)代入, 得
d^2y/dx^2 = [-e^(x+y)[1+e^(x+y)+2-e^(x+y)]^2/[1+e^(x+y)]^3}
= -9e^(x+y)/[1+e^(x+y)]^3
dy/dx + e^(x+y)(1+dy/dx) - 2 = 0 (1),
解得 dy/dx = [2-e^(x+y)]/[1+e^(x+y)] (2) ;
式 (1) 两边再对 x 求导, 得
d^2y/dx^2 + e^(x+y)(1+dy/dx)^2 + e^(x+y)(d^2y/dx^2) = 0
解得 d^2y/dx^2 = [-e^(x+y)(1+dy/dx)^2]/[1+e^(x+y)], 式(2)代入, 得
d^2y/dx^2 = [-e^(x+y)[1+e^(x+y)+2-e^(x+y)]^2/[1+e^(x+y)]^3}
= -9e^(x+y)/[1+e^(x+y)]^3
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询