矩阵正定的判定条件
展开全部
矩阵正定判定的三个充要条件洞亩斗:A的特征值全为正数;A合同于单位阵;A的顺序主子式全为正。
一、正定矩阵定义
在线性代数里,正定矩阵有时会简称为正定阵。在线性代数中,正定矩阵的性质类似复数中的正实数。与正定矩阵相对应的线性算子是对称正定双线性形式(复域中则耐弊对应埃尔米特正定双线性形式)。
广义定义:设M是n阶方阵,如果对任何非零向量z,都有zTMz>0,其中zT表示z的转置,就称M为正定矩阵。
例如:B为n阶矩阵,E为单位矩阵纳磨,a为正实数。在a充分大时,aE+B为正定矩阵。(B必须为对称阵)。
狭义定义:一个n阶的实对称矩阵M是正定的的条件是当且仅当对于所有的非零实系数向量z,都有zTMz>0。其中zT表示z的转置。
二、正定矩阵的性质
1、正定矩阵的任一主子矩阵也是正定矩阵。
2、若A为n阶对称正定矩阵,则存在唯一的主对角线元素都是正数的下三角阵L,使得A=L*L′,此分解式称为正定矩阵的楚列斯基(Cholesky)分解。
3、若A为n阶正定矩阵,则A为n阶可逆矩阵。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询