一元二次方程的概念
5个回答
2013-10-30
展开全部
在一个等式中,只含有一个未知数,且未知数的最高次数是2次的整式方程叫做一元二次方程。 一元二次方程有四个特点:(1)只含有一个未知数;(2)且未知数次数最高次数是2;(3)是整式方程.要判断一个方程是否为一元二次方程,先看它是否为整式方程,若是,再对它进行整理.如果能整理为 ax^2+bx+c=0(a≠0)的形式,则这个方程就为一元二次方程. (4)将方程化为一般形式:ax^2+bx+c=0时,应满足(a≠0) 1、直接开平方法: 直接开平方法就是用直接开平方求解一元二次方程的方法。用直接开平方法解形如(x-m)^2=n (n≥0)的方程,其解为x=m±√n 例1.解方程(1)(3x+1)^2=7 (2)9x^2-24x+16=11 分析:(1)此方程显然用直接开平方法好做,(2)方程左边是完全平方式(3x-4)^2,右边=11>0,所以此方程也可用直接开平方法解。 (1)解:(3x+1)^2=7 ∴(3x+1)^2=7 ∴3x+1=±√7(注意不要丢解) ∴x= ... ∴原方程的解为x1=...,x2= ... (2)解: 9x^2-24x+16=11 ∴(3x-4)^2=11 ∴3x-4=±√11 ∴x= ... ∴原方程的解为x1=...,x2= ... 2.配方法: </B>例1 用配方法解方程 3x^2-4x-2=0 解:将常数项移到方程右边 3x^2-4x=2 将二次项系数化为1:x^2-x= 方程两边都加上一次项系数一半的平方:x^2-x+( )^2= +( )^2 配方:(x-)^2= 直接开平方得:x-=± ∴x= ∴原方程的解为x1=,x2= . 3.公式法:把一元二次方程化成ax^2+bx+c的一般形式,然后把各项系数a, b, c的值代入求根公式就可得到方程的根。 当b^2-4ac>0时,求根公式为x1=[-b+√(b^2-4ac)]/2a,x2=[-b-√(b^2-4ac)]/2a(两个不相等的实数根) 当b^2-4ac=0时,求根公式为x1=x2=-b/2a(两个相等的实数根) 当b^2-4ac<0时,求根公式为x1=[-b+√(4ac-b^2)i]/2a,x2=[-b-√(4ac-b^2)i]/2a(两个虚数根)(初中理解为无实数根) 例3.用公式法解方程 2x^2-8x=-5 解:将方程化为一般形式:2x^2-8x+5=0 ∴a=2, b=-8, c=5 b^2-4ac=(-8)2-4×2×5=64-40=24>0 ∴x= = = ∴原方程的解为x1=,x2= . 4.因式分解法:把方程变形为一边是零,把另一边的二次三项式分解成两个一次因式的积的形式,让两个一次因式分别等于零,得到两个一元一次方程,解这两个一元一次方程所得的根,就是原方程的两个根。这种解一元二次方程的方法叫做因式分解法。 例4.用因式分解法解下列方程: (1) (x+3)(x-6)=-8 (2) 2x^2+3x=0 (3) 6x^2+5x-50=0 (选学) (4)x^2-4x+4=0 (选学) (1)解:(x+3)(x-6)=-8 化简整理得 x^2-3x-10=0 (方程左边为二次三项式,右边为零) (x-5)(x+2)=0 (方程左边分解因式) ∴x-5=0或x+2=0 (转化成两个一元一次方程) ∴x1=5,x2=-2是原方程的解。 (2)解:2x^2+3x=0 x(2x+3)=0 (用提公因式法将方程左边分解因式) ∴x=0或2x+3=0 (转化成两个一元一次方程) ∴x1=0,x2=-3/2是原方程的解。 注意:有些同学做这种题目时容易丢掉x=0这个解,应记住一元二次方程有两个解。 (3)解:6x2+5x-50=0 (2x-5)(3x+10)=0 (十字相乘分解因式时要特别注意符号不要出错) ∴2x-5=0或3x+10=0 ∴x1=5/2, x2=-10/3 是原方程的解。 (4)解:x^2-4x+4 =0 (∵4 可分解为2 ·2 ,∴此题可用因式分解法) (x-2)(x-2 )=0 ∴x1=2 ,x2=2是原方程的解。 小结: 一般解一元二次方程,最常用的方法还是因式分解法,在应用因式分解法时,一般要先将方程写成一般形式,同时应使二次项系数化为正数。
展开全部
概念:只含有一个未知数(一元),并且未知数项的最高次数是2(二次)的整式方程叫做一元二次方程。标准形式为:ax²+bx+c=0(a≠0)。
一元二次方程必须同时满足三个条件:
1.是整式方程,即等号两边都是整式,方程中如果有分母;且未知数在分母上,那么这个方程就是分式方程,不是一元二次方程,方程中如果有根号,且未知数在根号内,那么这个方程也不是一元二次方程(是无理方程)。
2.只含有一个未知数。
3.未知数项的最高次数是2。
一般形式
ax²+bx+c=0(a≠0)
其中ax²是二次项,a是二次项系数;bx是一次项;b是一次项系数;c是常数项。
使方程左右两边相等的未知数的值就是这个一元二次方程的解,一元二次方程的解也叫做一元二次方程的根。
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2017-07-17 · 知道合伙人教育行家
关注
展开全部
只含有一个未知数(即“元”),并且未知数的最高次数为2(即“次”)的整式方程叫做一元二次方程。
方程形式:
1、一般式:ax²+bx+c=0(a、b、c是实数,a≠0)
2、配方式:a(x+b/2a)^2=(b^2-4ac)/4a
3、两根式:a(x-x1)(x-x2)=0
解题方法技巧:
1、看是否能用因式分解法解(因式分解的解法中,先考虑提公因式法,再考虑平方公式法,最后考虑十字相乘法);
2、看是否可以直接开方解;
3、使用公式法求解;
4、最后再考虑配方法(配方法虽然可以解全部一元二次方程,但是有时候解题太麻烦)。
方法选择顺顺序:
因式分解>韦达定理>判别式 >公式法 >配方法>开平方>求根公式>表示法
方程形式:
1、一般式:ax²+bx+c=0(a、b、c是实数,a≠0)
2、配方式:a(x+b/2a)^2=(b^2-4ac)/4a
3、两根式:a(x-x1)(x-x2)=0
解题方法技巧:
1、看是否能用因式分解法解(因式分解的解法中,先考虑提公因式法,再考虑平方公式法,最后考虑十字相乘法);
2、看是否可以直接开方解;
3、使用公式法求解;
4、最后再考虑配方法(配方法虽然可以解全部一元二次方程,但是有时候解题太麻烦)。
方法选择顺顺序:
因式分解>韦达定理>判别式 >公式法 >配方法>开平方>求根公式>表示法
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
只含有一个未知数,并且未知数的最高次数是2的整式方程叫做一元二次方程.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
只含有一个未知数,并且未知数的最高次数是2的整式方程
标准形式:ax^2+bx+c=0(a≠0)
标准形式:ax^2+bx+c=0(a≠0)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |