
如图,在四边形ABCD中,已知,AD平行于BC,AB=CD,角ABC=角DCB,延长线断CB到E,是使BE=AD,连结AE,AC.
1个回答
展开全部
(1)求证:
∵AD//BC
∴∠D +∠DCB =180°
∵∠ABE +∠ABC =180°
∠ABC =∠DCB
∴∠D =∠ABE
又∵AB=CE,BE=AD
∴△ABE≌△CDA(SAS)
(2)解:
∵△ABE≌△CDA
∴∠E=∠DAC=40°
∵AD//BC
∴∠DAE+∠E=180°
即∠EAC+∠DAC+∠E=180°
∴∠EAC=100°
∵AD//BC
∴∠D +∠DCB =180°
∵∠ABE +∠ABC =180°
∠ABC =∠DCB
∴∠D =∠ABE
又∵AB=CE,BE=AD
∴△ABE≌△CDA(SAS)
(2)解:
∵△ABE≌△CDA
∴∠E=∠DAC=40°
∵AD//BC
∴∠DAE+∠E=180°
即∠EAC+∠DAC+∠E=180°
∴∠EAC=100°
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询