已知{an}是等差数列,其前n项和为Sn,{bn}是等比数列,且a1=b1=2,a4+b4=27,S4-b4=10(Ⅰ)求数列{an}与
已知{an}是等差数列,其前n项和为Sn,{bn}是等比数列,且a1=b1=2,a4+b4=27,S4-b4=10(Ⅰ)求数列{an}与{bn}的通项公式;(Ⅱ)求数列{...
已知{an}是等差数列,其前n项和为Sn,{bn}是等比数列,且a1=b1=2,a4+b4=27,S4-b4=10(Ⅰ)求数列{an}与{bn}的通项公式; (Ⅱ)求数列{an?bn}的前n项和.
展开
1个回答
展开全部
(Ⅰ)设等差数列的公差为d,等比数列的首项为q,
由a1=b1=2,得a4=2+3d,b4=2q3,s4=8+6d,
由a4+b4=27,S4-b4=10,得方程组
,
解得
,
所以:an=3n-1,bn=2n.
(Ⅱ)由(Ⅰ)知an?bn=(3n-1)?2n,
设数列{an?bn}的前n项和为Tn=a1b1+a2b2+…+anbn,
则Tn=2×2+5×22+8×23+…+(3n-1)×2n,①;
2Tn=2×22+5×23+…+(3n-4)×2n+(3n-1)×2n+1,②.
由①-②得,-Tn=2×2+3×22+3×23+…+3×2n-(3n-1)×2n+1
=
-(3n-1)×2n+1-2
=-(3n-4)×2n+1-8.
所以Tn=(3n-4)×2n+1+8.
由a1=b1=2,得a4=2+3d,b4=2q3,s4=8+6d,
由a4+b4=27,S4-b4=10,得方程组
|
解得
|
所以:an=3n-1,bn=2n.
(Ⅱ)由(Ⅰ)知an?bn=(3n-1)?2n,
设数列{an?bn}的前n项和为Tn=a1b1+a2b2+…+anbn,
则Tn=2×2+5×22+8×23+…+(3n-1)×2n,①;
2Tn=2×22+5×23+…+(3n-4)×2n+(3n-1)×2n+1,②.
由①-②得,-Tn=2×2+3×22+3×23+…+3×2n-(3n-1)×2n+1
=
6×(1?2n) |
1?2 |
=-(3n-4)×2n+1-8.
所以Tn=(3n-4)×2n+1+8.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询