已知{an}是等差数列,其前n项和为Sn,{bn}是等比数列,且a1=b1=2,a4+b4=27,S4-b4=10(Ⅰ)求数列{an}与

已知{an}是等差数列,其前n项和为Sn,{bn}是等比数列,且a1=b1=2,a4+b4=27,S4-b4=10(Ⅰ)求数列{an}与{bn}的通项公式;(Ⅱ)求数列{... 已知{an}是等差数列,其前n项和为Sn,{bn}是等比数列,且a1=b1=2,a4+b4=27,S4-b4=10(Ⅰ)求数列{an}与{bn}的通项公式; (Ⅱ)求数列{an?bn}的前n项和. 展开
 我来答
销魂哥亂
2014-10-07 · 超过68用户采纳过TA的回答
知道答主
回答量:111
采纳率:0%
帮助的人:158万
展开全部
(Ⅰ)设等差数列的公差为d,等比数列的首项为q,
由a1=b1=2,得a4=2+3d,b4=2q3,s4=8+6d,
由a4+b4=27,S4-b4=10,得方程组
2+3d+2q3=27
8+6d?2q3=10

解得
d=3
q=2

所以:an=3n-1,bn=2n
(Ⅱ)由(Ⅰ)知an?bn=(3n-1)?2n
设数列{an?bn}的前n项和为Tn=a1b1+a2b2+…+anbn
则Tn=2×2+5×22+8×23+…+(3n-1)×2n,①;
2Tn=2×22+5×23+…+(3n-4)×2n+(3n-1)×2n+1,②.
由①-②得,-Tn=2×2+3×22+3×23+…+3×2n-(3n-1)×2n+1
=
6×(1?2n)
1?2
-(3n-1)×2n+1-2
=-(3n-4)×2n+1-8.
所以Tn=(3n-4)×2n+1+8.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式