高中数学里有个“同增异减”的关于函数单调性的技巧,具体是怎样来着?最好有个例题吧
3个回答
展开全部
“同增异减”对应的定理:
1. 设函数y=f(x)是由函数y=g(u)和u=h(x)复合而成,即f(x)=g[h(x)](注意对应法则为f,g,h不相同)若函数y=g(u)有区间(a,b)内是增函数,函数u=h(x)在区间(c,d)内为增函数,并且u=h(x)在区间(c,d)内的函数值都在区间(a,b)内,则函数y=f(x)=g[h(x)]在区间(c,d)内是增函数。
这里特别需要注意的是“并且u=h(x)在区间(c,d)内的函数值都在区间(a,b)内”这一条件。
2. 设函数y=f(x)是由函数y=g(u)和u=h(x)复合而成,即f(x)=g[h(x)](注意对应法则为f,g,h不相同)若函数y=g(u)有区间(a,b)内是增函数,函数u=h(x)在区间(c,d)内为减函数,并且u=h(x)在区间(c,d)内的函数值都在区间(a,b)内,则函数y=f(x)=g[h(x)]在区间(c,d)内是减函数。
3. 设函数y=f(x)是由函数y=g(u)和u=h(x)复合而成,即f(x)=g[h(x)](注意对应法则为f,g,h不相同)若函数y=g(u)有区间(a,b)内是减函数,函数u=h(x)在区间(c,d)内为增函数,并且u=h(x)在区间(c,d)内的函数值都在区间(a,b)内,则函数y=f(x)=g[h(x)]在区间(c,d)内是减函数。
4. 设函数y=f(x)是由函数y=g(u)和u=h(x)复合而成,即f(x)=g[h(x)](注意对应法则为f,g,h不相同)若函数y=g(u)有区间(a,b)内是减函数,函数u=h(x)在区间(c,d)内为减函数,并且u=h(x)在区间(c,d)内的函数值都在区间(a,b)内,则函数y=f(x)=g[h(x)]在区间(c,d)内是增函数。
1. 设函数y=f(x)是由函数y=g(u)和u=h(x)复合而成,即f(x)=g[h(x)](注意对应法则为f,g,h不相同)若函数y=g(u)有区间(a,b)内是增函数,函数u=h(x)在区间(c,d)内为增函数,并且u=h(x)在区间(c,d)内的函数值都在区间(a,b)内,则函数y=f(x)=g[h(x)]在区间(c,d)内是增函数。
这里特别需要注意的是“并且u=h(x)在区间(c,d)内的函数值都在区间(a,b)内”这一条件。
2. 设函数y=f(x)是由函数y=g(u)和u=h(x)复合而成,即f(x)=g[h(x)](注意对应法则为f,g,h不相同)若函数y=g(u)有区间(a,b)内是增函数,函数u=h(x)在区间(c,d)内为减函数,并且u=h(x)在区间(c,d)内的函数值都在区间(a,b)内,则函数y=f(x)=g[h(x)]在区间(c,d)内是减函数。
3. 设函数y=f(x)是由函数y=g(u)和u=h(x)复合而成,即f(x)=g[h(x)](注意对应法则为f,g,h不相同)若函数y=g(u)有区间(a,b)内是减函数,函数u=h(x)在区间(c,d)内为增函数,并且u=h(x)在区间(c,d)内的函数值都在区间(a,b)内,则函数y=f(x)=g[h(x)]在区间(c,d)内是减函数。
4. 设函数y=f(x)是由函数y=g(u)和u=h(x)复合而成,即f(x)=g[h(x)](注意对应法则为f,g,h不相同)若函数y=g(u)有区间(a,b)内是减函数,函数u=h(x)在区间(c,d)内为减函数,并且u=h(x)在区间(c,d)内的函数值都在区间(a,b)内,则函数y=f(x)=g[h(x)]在区间(c,d)内是增函数。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询