有理函数积分怎么拆分两个具有相同公因式的多项式,例如:
2个回答
展开全部
-x^2-2
=-(x^2+x+1) +x -1
=-(x^2+x+1) +(1/2)(2x+1) - 3/2
∫ (-x^2-2)/(x^2 +x +1)^2 dx
=-∫dx/(x^2+x+1) +(1/2)∫(2x+1)/(x^2 +x +1)^2 dx -(3/2) ∫ dx/(x^2+x+1)^2
=-∫dx/(x^2+x+1) -(3/2) ∫ dx/(x^2+x+1)^2 - (1/2)[ 1/(x^2 +x +1)^2]
=-(2√3/3) arctan [(x+1)/√3]
- (2√3/3) { arctan [(x+1)/√3] + (√3/4) (2x+1)/ (x^2 +x+ 1) }
-(1/2)[ 1/(x^2 +x +1)^2] + C
consider
x^2+x+1 = (x+ 1/2)^2 + 3/4
let
x+ 1/2 = (√3/2) tanu
dx =(√3/2) (secu)^2 .du
∫dx/(x^2+x+1)
=∫(√3/2) (secu)^2 .du/ [(3/4)(secu)^2]
=(2√3/3)∫ du
=(2√3/3)u + C'
=(2√3/3) arctan [(x+1)/√3] + C'
∫ dx/(x^2+x+1)^2
=∫ (√3/2) (secu)^2 .du/[(9/16)(secu)^4]
=(8√3/9)∫ (cosu)^2 du
=(4√3/9)∫ (1+cos2u) du
=(4√3/9) (u +(1/2)sin2u) + C''
=(4√3/9) { arctan [(x+1)/√3] +(√3/4) (2x+1)/ (x^2 +x+ 1) } + C''
=-(x^2+x+1) +x -1
=-(x^2+x+1) +(1/2)(2x+1) - 3/2
∫ (-x^2-2)/(x^2 +x +1)^2 dx
=-∫dx/(x^2+x+1) +(1/2)∫(2x+1)/(x^2 +x +1)^2 dx -(3/2) ∫ dx/(x^2+x+1)^2
=-∫dx/(x^2+x+1) -(3/2) ∫ dx/(x^2+x+1)^2 - (1/2)[ 1/(x^2 +x +1)^2]
=-(2√3/3) arctan [(x+1)/√3]
- (2√3/3) { arctan [(x+1)/√3] + (√3/4) (2x+1)/ (x^2 +x+ 1) }
-(1/2)[ 1/(x^2 +x +1)^2] + C
consider
x^2+x+1 = (x+ 1/2)^2 + 3/4
let
x+ 1/2 = (√3/2) tanu
dx =(√3/2) (secu)^2 .du
∫dx/(x^2+x+1)
=∫(√3/2) (secu)^2 .du/ [(3/4)(secu)^2]
=(2√3/3)∫ du
=(2√3/3)u + C'
=(2√3/3) arctan [(x+1)/√3] + C'
∫ dx/(x^2+x+1)^2
=∫ (√3/2) (secu)^2 .du/[(9/16)(secu)^4]
=(8√3/9)∫ (cosu)^2 du
=(4√3/9)∫ (1+cos2u) du
=(4√3/9) (u +(1/2)sin2u) + C''
=(4√3/9) { arctan [(x+1)/√3] +(√3/4) (2x+1)/ (x^2 +x+ 1) } + C''
追问
请问第一步是怎么拆分的?为什么分子不是Ax∧3+Bx∧2+Cx+D和Ex+F
而是Ax+B和C
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |