举例说明什么是抽样分布
1个回答
展开全部
(一)样本均值的抽样分布
1.样本均值抽样分布的形成
样本均值的抽样分布即所有样本均值的可能取值形成的概率分布。例如,某高校大一年级参加英语四级考试的人数为6000人,为了研究这6000人的平均考分,欲从中随机抽取500人组成样本进行观察。若逐一抽取全部可能样本,并计算出每个样本的平均考分,将会得出很多不完全相同的样本均值,全部可能的样本均值有一个相应的概率分布,即为样本均值的抽样分布。
我们知道,从总体的N个单位中抽取一个容量为n的随机样本,在重复抽样条件下,共有 个可能的样本;在不重复抽样条件下,共有 个可能的样本。因此,样本均值是一个随机变量。
2.样本均值抽样分布的特征
从抽样分布的角度看,我们所关心的分布的特征主要是数学期望和方差。这两个特征一方面与总体分布的均值和方差有关,另一方面也与抽样的方法是重复抽样还是不重复抽样有关。样本均值的方差则与抽样方法有关。在重复抽样条件下,样本均值的方差为总体方差的1/n,即:
公式一:
在不重复抽样条件下,样本均值的方差为:
公式二:
从公式一和公式二可以看出两者仅相差系数 ,该系数通常被称为有限总体修正系数。在实际应用中,这一系数常常被忽略不计,主要是因为:对于无限总体进行不重复抽样时,由于N未知,此时样本均值的标准差仍可按公式一计算,即可按重复抽样处理;对于有限总体,当N很大而抽样比例n/N很小时,其修正系数 ,通常在样本容量n小于总体容量N的5%时,有限总体修正系数就可以忽略不计。因此,公式一是计算样本均值方差的常用公式。
3.样本均值抽样分布的形式
样本均值抽样分布的形式与原有总体的分布和样本容量n的大小有关。如果原有总体是正态分布,那么,无论样本容量的大小,样本均值的抽样分布都服从正态分布。如果原有总体的分布是非正态分布,就要看样本容量的大小。随着样本容量n的增大(通常要求n≥30),不论原来的总体是否服从正态分布,样本均值的抽样分布都将趋于正态分布,即统计上著名的中心极限定理。虽然总体成绩的分布形态未知,但σ已知,且n=150为大样本,依据中心极限定理可知:样本均值的抽样分布近似服从正态分布。
(二)样本比例的抽样分布
样本比例即指样本中具有某种特征的单位所占的比例。样本比例的抽样分布就是所有样本比例的可能取值形成的概率分布。例如,某高校大一年级学生参加英语四级考试的人数有6000人,为了估计这6000人中男生所占的比例,从中抽取500人组成样本进行观察,若逐一抽取全部可能样本,并计算出每个样本的男生比例,则全部可能的样本比例的概率分布,即为样本比例的抽样分布。可见,样本比例也是一个随机变量。
1.样本均值抽样分布的形成
样本均值的抽样分布即所有样本均值的可能取值形成的概率分布。例如,某高校大一年级参加英语四级考试的人数为6000人,为了研究这6000人的平均考分,欲从中随机抽取500人组成样本进行观察。若逐一抽取全部可能样本,并计算出每个样本的平均考分,将会得出很多不完全相同的样本均值,全部可能的样本均值有一个相应的概率分布,即为样本均值的抽样分布。
我们知道,从总体的N个单位中抽取一个容量为n的随机样本,在重复抽样条件下,共有 个可能的样本;在不重复抽样条件下,共有 个可能的样本。因此,样本均值是一个随机变量。
2.样本均值抽样分布的特征
从抽样分布的角度看,我们所关心的分布的特征主要是数学期望和方差。这两个特征一方面与总体分布的均值和方差有关,另一方面也与抽样的方法是重复抽样还是不重复抽样有关。样本均值的方差则与抽样方法有关。在重复抽样条件下,样本均值的方差为总体方差的1/n,即:
公式一:
在不重复抽样条件下,样本均值的方差为:
公式二:
从公式一和公式二可以看出两者仅相差系数 ,该系数通常被称为有限总体修正系数。在实际应用中,这一系数常常被忽略不计,主要是因为:对于无限总体进行不重复抽样时,由于N未知,此时样本均值的标准差仍可按公式一计算,即可按重复抽样处理;对于有限总体,当N很大而抽样比例n/N很小时,其修正系数 ,通常在样本容量n小于总体容量N的5%时,有限总体修正系数就可以忽略不计。因此,公式一是计算样本均值方差的常用公式。
3.样本均值抽样分布的形式
样本均值抽样分布的形式与原有总体的分布和样本容量n的大小有关。如果原有总体是正态分布,那么,无论样本容量的大小,样本均值的抽样分布都服从正态分布。如果原有总体的分布是非正态分布,就要看样本容量的大小。随着样本容量n的增大(通常要求n≥30),不论原来的总体是否服从正态分布,样本均值的抽样分布都将趋于正态分布,即统计上著名的中心极限定理。虽然总体成绩的分布形态未知,但σ已知,且n=150为大样本,依据中心极限定理可知:样本均值的抽样分布近似服从正态分布。
(二)样本比例的抽样分布
样本比例即指样本中具有某种特征的单位所占的比例。样本比例的抽样分布就是所有样本比例的可能取值形成的概率分布。例如,某高校大一年级学生参加英语四级考试的人数有6000人,为了估计这6000人中男生所占的比例,从中抽取500人组成样本进行观察,若逐一抽取全部可能样本,并计算出每个样本的男生比例,则全部可能的样本比例的概率分布,即为样本比例的抽样分布。可见,样本比例也是一个随机变量。
迈杰
2024-11-30 广告
2024-11-30 广告
GWAS,即全基因组关联分析,是一种强大的遗传学研究方法。它通过对大规模群体的DNA变异进行系统性扫描,寻找与特定性状(如疾病易感性、药物反应等)相关联的遗传变异。在迈杰转化医学研究(苏州)有限公司,我们利用先进的GWAS技术,挖掘疾病相关...
点击进入详情页
本回答由迈杰提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询