什么叫科学记数法?
运用科学记数法a×10^n的数字,它的精确度以a的最后一个数在原数中的数位为准。
如:
13600,精确到十位,记作:1.360X10^4
13200 ,精确到百位,记作:1.32X10^4
322000,精确到千位,记作:3.22X10^5
扩展资料
目前记数使用的印度 ———阿拉伯数码采用 10进位值制原理。其中的10进制受自然现象影响而成,公认它与人生有10指有关;而位值制却是主观的产物。回顾记数法的历史可以发现,位值制在记数中的重要性远远大于10进制,曾被数学史家比喻为字母在文字中的重要性。位值的表现方式是多方面的,其形成过程也是漫长的 。
记数法中的位值思想是指数码符号不仅有其本意表示的数目大小,还要依靠它所在的位置决定该数码在整个数目中的确切数值。 例如印度 ———阿拉伯数码121,右边的数码1表示数1,中间的2 因在10位上而表示20,左边同样一个数码1因在百位上就表示100。
每位数码之间用加法组合,整个数目表示一百二十一。 又如罗马数码Ⅳ,右边的Ⅴ表示5 ,左边的Ⅰ表示- 1 ,数码之间也用加法组合 ,整个数目表示4。
现在通行的印度 ———阿拉伯数码采用10进位值制记数法,任何一个自然数都可以表示成 an·10n+ an-1·10 n-1 + ……+ a1·10 + a0 的形式 。 10叫做进位基数 , a0 , a1 , …, an 是 1 ,2 , …,9 ,0这10个数码中的某一个 。 所谓位值制就是在书写时省去10的乘幂与加号 。
如上述121是1·102+2·10+ 1的简写。 其特点是只用这10个数码便可将任何自然数表示出来。从右边算起,数码所在的位置依次称为个位,十位 ,百位等等。一个数码表示什么数值,要看它在什么位置上,这就是“位值”(place value 或 positional value) 的含义 。
古代记数法中采用位值制的主要有巴比伦楔形文字记数法,玛雅记数法,中国的算筹记数法和印度———阿拉伯数码记数法 。 其中巴比伦采用60进位记数,玛雅有20进位和18进位混用记数,中国算筹和印度 ———阿拉伯数码都用10进位 。
玛雅人记数自下而上进行,最下面是个位,越往上位数越高;其余的位值制记数法都是自右向左位数依次增大。 虽然进位基数和数码排列方式不尽相同,但在位值的含义上都一致,这反映了人类数学发展的共性。
参考资料来源:百度百科-科学计数法
参考资料来源:百度百科-计数法