一道初三数学题。在线等。
如图,已知Rt△ABC,∠ABC=90°,以直角边AB为直径作圆O,交斜边AC于点D,连接BD。(1)若AD=3,BD=4,求边BC的长;(2)取BC的中点E,连接ED,...
如图,已知Rt△ABC,∠ABC=90°,以直角边AB为直径作圆O,交斜边AC于点D,连接BD。
(1)若AD=3,BD=4,求边BC的长;
(2)取BC的中点E,连接ED,试证明ED与圆O相切。
在线等答案。
请会的同学帮个忙。
谢谢。 展开
(1)若AD=3,BD=4,求边BC的长;
(2)取BC的中点E,连接ED,试证明ED与圆O相切。
在线等答案。
请会的同学帮个忙。
谢谢。 展开
6个回答
展开全部
1)∠ABC=∠ADB=∠BDC=RT∠,所以三个三角形相似,又知道AD=3,BD=4,AB=5,得出BC=AB*BD/AD=20/3.
2)因为E是直角三角形BDC斜边上的中点,所以BE=EC=DE,∠EBD=∠EDB;又OD=OB,故∠OBD=∠ODB。综上,∠EDO=∠OBE=RT∠,故相切
2)因为E是直角三角形BDC斜边上的中点,所以BE=EC=DE,∠EBD=∠EDB;又OD=OB,故∠OBD=∠ODB。综上,∠EDO=∠OBE=RT∠,故相切
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
先看第一问:画出图来
通过标出AD=3,BD=4,因为圆O是以AB为直径的圆,所以圆O直径AB所对应的角ADB是直角。
在直角三角形ABD中,AD=3,BD=4,AB=5(勾股定理)
连接OD。O为AB的中点,则在RT△ABC和RT△ADB中顶角相等,可求出BC的大小为20/3
第二问:取BC中点E。连接ED。则通过上一问角BDC是直角可知ED=BE=EC,..(有点事儿,自己通过角度大小证明吧)
通过标出AD=3,BD=4,因为圆O是以AB为直径的圆,所以圆O直径AB所对应的角ADB是直角。
在直角三角形ABD中,AD=3,BD=4,AB=5(勾股定理)
连接OD。O为AB的中点,则在RT△ABC和RT△ADB中顶角相等,可求出BC的大小为20/3
第二问:取BC中点E。连接ED。则通过上一问角BDC是直角可知ED=BE=EC,..(有点事儿,自己通过角度大小证明吧)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
(1)AC与BD垂直,三角形ADB与BDC相似,AC*CD=BD^2,CD=16/3
(2)BE=DE=EC,角EDC=ECD,又(1)中的相似,知角ABD=DCB
因OB=OD,角ODB=OBD=DCB=ECD,所以角ODE为直角,所以相切
(2)BE=DE=EC,角EDC=ECD,又(1)中的相似,知角ABD=DCB
因OB=OD,角ODB=OBD=DCB=ECD,所以角ODE为直角,所以相切
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
解:(1)∵AB是⊙O的直径,点D在⊙O上。
∴∠ADB=∠CDB=90°
∵∠ABC=90°
∴⊿ABC∽ADB
AD∶AB=BD∶BC
3∶5=4∶BC
BC=20/3
(2)∵∠CDB=90°, E是BC 的中点。
∴EB=ED
∠EBD=∠EDB
∵OB=OD
∴∠OBD=ODB
∵∠OBD+∠EBD=90°
∴∠ODB+EDB=90°
即:∠ODE=90°
∴ED是圆O的切线。
∴∠ADB=∠CDB=90°
∵∠ABC=90°
∴⊿ABC∽ADB
AD∶AB=BD∶BC
3∶5=4∶BC
BC=20/3
(2)∵∠CDB=90°, E是BC 的中点。
∴EB=ED
∠EBD=∠EDB
∵OB=OD
∴∠OBD=ODB
∵∠OBD+∠EBD=90°
∴∠ODB+EDB=90°
即:∠ODE=90°
∴ED是圆O的切线。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
(1)∠ADB对应的弦为直径AB,所以BD垂直于AC,易证Rt△ADB相似于Rt△ABC,则AD:AB=AB:AC,其中AB=5,得到AC=25/3。
同样Rt△BDC相似于Rt△ABC,得到BC:AC=BD:AB,故BC=20/3
(2)连接OE,在Rt△BDC中,E为斜边BC中点,所以EB=ED,△BOE与△DOE三边相等为全等三角形,故有∠EDB=∠EBO=90即OD垂直于DE,ED与圆O相切
同样Rt△BDC相似于Rt△ABC,得到BC:AC=BD:AB,故BC=20/3
(2)连接OE,在Rt△BDC中,E为斜边BC中点,所以EB=ED,△BOE与△DOE三边相等为全等三角形,故有∠EDB=∠EBO=90即OD垂直于DE,ED与圆O相切
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询