若不等式x^2-mx+1≥0对一切x属于(0,1/2]恒成立,则实数m的最大值为?
2个回答
2011-01-14 · 知道合伙人教育行家
关注
展开全部
x^2-mx+1≥0对一切x属于(0,1/2]恒成立
x^2-mx+1≥0
mx≤x^2+1
x∈(0,1/2)
两边同除以x
m≤x+1/x
f(x)=x+1/x
f'(x0=1-1/x^2=(x^2-1)x^2
在x∈(0,1/2),f'(x)<0,f(x)单调减
fmin=f(1/2)=1/2+2=5/2
即m最大值5/2
x^2-mx+1≥0
mx≤x^2+1
x∈(0,1/2)
两边同除以x
m≤x+1/x
f(x)=x+1/x
f'(x0=1-1/x^2=(x^2-1)x^2
在x∈(0,1/2),f'(x)<0,f(x)单调减
fmin=f(1/2)=1/2+2=5/2
即m最大值5/2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询