s=1*1+2*2+3*3+4*4+.......+n*n=1/6n(n+1)(2n+1) 求证

 我来答
暗香沁人
高赞答主

推荐于2016-12-01 · 点赞后记得关注哦
知道大有可为答主
回答量:1万
采纳率:83%
帮助的人:6983万
展开全部
因为(n+1)^3-n^3=3n^2+3n+1
将n=1,2,3,.....分别代入上式可得
2^3-1^3=3x1^2+3x1+1
3^3-2^3=3x2^2+3x2+1
......
(n+1)^3-n^3=3n^2+3n+1
将上式累加起来可得
(n+1)^3-1^3=3(1^2+2^2+3^2+....+n^2)+3(1+2+3+.....+n)+n
又1^2+2^2+3^2+....+n^2=n(n+1)/2
所以1方+2方+3方+……+n方=1/6n(n+1)(2n+1)
或者用数学归纳法
1^2=1/6*1(2*1+1)(1+1)=1/6*6=1
1^2+2^2=1/6*(2*2+1)(2+1)=1/6*30=5
...................................
假设1方+2方+3方+……+N方=1/6n(2n+1)(n+1)

1^2+2^2+3^2+……+n^2+(n+1)^2
=1/6n(2n+1)(n+1)+(n+1)^2
=1/6(n+1)(2n^2+n+6n+6)
=1/6*(n+1)(2n+3)(n+2)
=1/6*(n+1)[2(n+1)+1][(n+1)+1]
假设成立
得证
匿名用户
2011-01-26
展开全部
用数学归纳法就可以了
1、N=1时,1=1(1+1)(2×1+1)/6=1
2、N=2时,1+4=2(2+1)(2×2+1)/6=5
3、设N=x时,公式成立,即1+4+9+…+x2=x(x+1)(2x+1)/6
则当N=x+1时,
1+4+9+…+x2+(x+1)2=x(x+1)(2x+1)/6+(x+1)2
=(x+1)[2(x2)+x+6(x+1)]/6
=(x+1)[2(x2)+7x+6]/6
=(x+1)(2x+3)(x+2)/6
=(x+1)[(x+1)+1][2(x+1)+1]/6
也满足公式
4、综上所述,平方和公式1^2+2^2+3^2+…+n^2=n(n+1)(2n+1)/6成立,得证。其实百科里都有
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式