如图,点E、F、G、H分别位于正方形ABCD的四条边上,四边形EFGH也是正方形,当点E位于何处时,正方形EFGH
如图,点E、F、G、H分别位于正方形ABCD的四条边上,四边形EFGH也是正方形,当点E位于何处时,正方形EFGH的面积最小?...
如图,点E、F、G、H分别位于正方形ABCD的四条边上,四边形EFGH也是正方形,当点E位于何处时,正方形EFGH的面积最小?
展开
1个回答
展开全部
设正方形ABCD的边长为a,AE=x,则BE=a-x,
∵四边形EFGH是正方形,
∴EH=EF,∠HEF=90°,
∴∠AEH+∠BEF=90°,
∵∠AEH+∠AHE=90°,
∴∠AHE=∠BEF,
在△AHE和△BEF中,
,
∴△AHE≌△BEF(AAS),
同理可证△AHE≌△BEF≌悉慎猛△CFG≌△DHG,
∴AE=BF=CG=DH=x,AH=BE=CF=DG=a-x
∴EF2=BE2+BF2=(a-x)2+x2=2x2-2ax+a2,
∴正方形EFGH的面积S=EF2=2x2-2ax+a2=2(x-
a)2+
a2,
即:当睁桥x=
a(即E在AB边上的中点)时,正方形EFGH的面积最小,最小的面积为
a2.
∵四边形EFGH是正方形,
∴EH=EF,∠HEF=90°,
∴∠AEH+∠BEF=90°,
∵∠AEH+∠AHE=90°,
∴∠AHE=∠BEF,
在△AHE和△BEF中,
|
∴△AHE≌△BEF(AAS),
同理可证△AHE≌△BEF≌悉慎猛△CFG≌△DHG,
∴AE=BF=CG=DH=x,AH=BE=CF=DG=a-x
∴EF2=BE2+BF2=(a-x)2+x2=2x2-2ax+a2,
∴正方形EFGH的面积S=EF2=2x2-2ax+a2=2(x-
1 |
2 |
1 |
2 |
即:当睁桥x=
1 |
2 |
1 |
2 |
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询