-x的导数是什么
-x的导数是 -1。
x^n的导数为n*x^(n-1)
那么x的导数就是1
再乘以常数-1
所以-x的导数就是-1
不是所有的函数都有导数,一个函数也不一定在所有的点上都有导数。若某函数在某一点导数存在,则称其在这一点可导,否则称为不可导。然而,可导的函数一定连续;不连续的函数一定不可导。
对于可导的函数f(x),x↦f'(x)也是一个函数,称作f(x)的导函数(简称导数)。寻找已知的函数在某点的导数或其导函数的过程称为求导。
扩展资料:
如果函数y=f(x)在开区间内每一点都可导,就称函数f(x)在区间内可导。这时函数y=f(x)对于区间内的每一个确定的x值,都对应着一个确定的导数值,这就构成一个新的函数,称这个函数为原来函数y=f(x)的导函数。
函数y=f(x)在x0点的导数f'(x0)的几何意义:表示函数曲线在点P0(x0,f(x0))处的切线的斜率(导数的几何意义是该函数曲线在这一点上的切线斜率)。
原函数与反函数导数关系(由三角函数导数推反三角函数的):y=f(x)的反函数是x=g(y),则有y'=1/x'。
参考资料来源:百度百科——导数
-x的导数是 -1。
x^n的导数为n*x^(n-1),那么x的导数就是1。再乘以常数-1,所以-x的导数就是-1。
不是抄所有的函数都有导数,一个函数也不一定在所有的点上都有导数。若某函数在某一点导数存在,则称其在袭这一点可导,否则称为不可导。然而,可导的函数一定连续;不连续的函数一定不可导。
对于可导的函数f(x),x↦f'(x)也是一个函数,称作f(x)的导函数(简称导数)。寻找已知的函数在百某点的导数或其导函数的过程称为求导。
扩展资料:
如果函数y=f(x)在开区间内每一点都可导,就称函数f(x)在区间内可导。这时函数y=f(x)对于区间内的每一个确定的x值,都对应着一个确定的导数值,这就构成一个新的函数,称这个函数为原来函数y=f(x)的导函数,记作y'、f'(x)、dy/dx或df(x)/dx,简称导数。
导数是微积分的一个重要的支柱。牛顿及莱布尼茨对此做出了贡献。
几何意义:
函数y=f(x)在x0点的导数f'(x0)的几何意义:表示函数曲线在点P0(x0,f(x0))处的切线的斜率(导数的几何意义是该函数曲线在这一点上的切线斜率)。
-x的导数是 -1。
x^n的导数为n*x^(n-1)
那么x的导数就是1
再乘以常数-1
所以-x的导数就是-1
不是所有的函数都有来导数,一个函数也不一定在所有的点上都有导数。若某函数在某一点导数存在,则称其在这一点可导,否则称为不可导。然源而,可导的函数一定连续;不连续的函数一定不可导。
扩展资料:
一阶导数等于0的点是极值点的必要条件,注意是必要条件不是充分条件。
当f'(a)=0且f''(a)=0时,不能通过二阶导数判断是否极值点,可通过泰勒展开来考虑。
如果三阶导数不为,,则不是极值点(就像一阶导数不为0不是极值点一样——但是可能是最值点——主要是在边界有问题,所以有时候为了避免讨论边界,都限定在开区间中讨论,省去很多麻烦);
如果三阶导数为0,则考虑4阶导数,当4阶导数不为0时,是极值点,判断方法同二阶导数;
当4阶导数为0时,需考虑5阶导数,判断方法同三阶导数。
参考资料来源:百度百科-导数
x^n的导数为n*x^(n-1)
那么x的导数就是1
再乘以常数-1,
所以-x的导数就是-1
2016-12-21