∫x∧2/(1+x∧2)∧2dx

∫x∧2/(1+x∧2)∧2dx... ∫x∧2/(1+x∧2)∧2dx 展开
 我来答
错过多姿多彩
2017-11-19 · TA获得超过727个赞
知道小有建树答主
回答量:376
采纳率:93%
帮助的人:283万
展开全部
三角换元来做;有x^2和x^2+1,利用tan换元;过程如下:令x=tanu,则x²+1=sec²u,dx=sec²udu
∫x^2/(x^2+1)^2dx
=∫ [tan²u/(secu)^4]sec²udu
=∫ tan²u/sec²udu
=∫ (sec²u-1)/sec²udu
=∫ 1 du - ∫ cos²u du
=u - (1/2)∫ (1+cos2u) du
=u - (1/2)u - (1/4)sin2u + C
=(1/2)u - (1/2)sinucosu + C
=(1/2)arctanx - (1/2)x/(1+x²) + C 望采纳!
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式