高等数学:如何证明图中等式?(a、b、c为向量)

 我来答
穰蝶化灵寒
2020-06-10 · TA获得超过4218个赞
知道大有可为答主
回答量:3068
采纳率:32%
帮助的人:388万
展开全部
以下a,b,c均表示向量.
取一个右手直角坐标系,设
a=(a1,a2,a3),b=(b1,b2,b3),c=(c1,c2,c3).
由于axb=(a2b3-a3b2,a3b1-a1b3,a1b2-a2b1)
所以(axb)xc的第一个坐标为
(a3b1-a1b3)c3-(a1b2-a2b1)c2.
另一方面,(a·c)·b-(b·c)·a的第一个坐标为
(a1c1+a2c2+a3c3)b1-(b1c1+b2c2+b3c3)a1=(a3b1-a1b3)c3-(a1b2-a2b1)c2
因此等式两边的向量的第一个坐标相等,同理可证其他两个坐标也相等,从而等式成立
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式