解微分方程y ̀=y^2+2(sinx-1)y+sinx^2-2sinx+cosx+1
1个回答
展开全部
你的题目是错戚拍的.我做过这液搏道题,正确的是高埋羡:
y'=y^2+2(sinx-1)y+(sinx)^2-2sinx-cosx+1
这是
y'=(y+sinx-1)^2-cosx
y'+cosx=(y+sinx-1)^2.1
设y+sinx-1=t
两边求导:y'+cosx=t'.2
2式代入1式:
t'=t^2
1/t^2dt=dx
两边积分:
-1/t=x+C
-1/(y+sinx-1)=x+c
y'=y^2+2(sinx-1)y+(sinx)^2-2sinx-cosx+1
这是
y'=(y+sinx-1)^2-cosx
y'+cosx=(y+sinx-1)^2.1
设y+sinx-1=t
两边求导:y'+cosx=t'.2
2式代入1式:
t'=t^2
1/t^2dt=dx
两边积分:
-1/t=x+C
-1/(y+sinx-1)=x+c
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询