tan与cot之间的关系
tan与cot之间的关系介绍如下如渣:
正切(tan)和余切(cot)之间的关系是倒数关系。
正切(tana)=对边/邻边
余切(cota)=邻边/对边
正切(tana)×余切(cota)=对边/邻边×邻边/对边=1
所以是倒数关系。
扩展资料:
在Rt△ABC(直角三角形)中,∠C=90°,AB是∠C的对边c,BC是∠A的对边a,AC是∠B的神橡谨对边b,正切函数就是tanB=b/a,即tanB=AC/BC。
三角函数是数学中属于初等函数中的超越函数的一类函数。[1] 它们的本质是任意角的集合与一个比值的集合的变量之间的映射。通常的三角函数是在平面直角坐标系中定义的,其定义域为整个实数域。另一种定义是在直角三角形中,但并不完全。现代数学把它们描述成无穷数列的极限和微分方程的解,将其定义扩展到复数系。
由于三角函数的周期性,它并不具有单值函数意义上的反函数。
三角函数在复数中有较为重要的应用。在物理学中,三角函数也是常用的工具。
在Rt△ABC中,如果锐角A确定,那么角A的对边与邻边的比值随之确定,这个比叫做角A的正切,记作tanA。
即:tanA=∠A的对边/∠A的邻边。
在直角三角形中,某锐角的相邻直角边和相对直角边的比,叫做该锐角的余切。余切与正切互为倒数,用“cot+角度”表示。余切函数的图象由一些隔离的分支组成(如图)。余切函数是无界函数,可取一切实数值,也是奇函数和周期函数,其最小正周期是π。
任意角终边上除顶点外的任一点的横坐标除以该点的非零纵坐标,角的顶点与平面直角坐标系的原点游基重合,而该角的始边则与正x轴重合。简单点理解:直角三角形任意一锐角的邻边和对边的比,叫做该锐角的余切。
余切表示用“cot+角度”,如:30°的余切表示为cot 30°;角A的余切表示为cot A。旧时用ctg A来表示余切,和cot A是一样的。假设∠A的对边为a、邻边为b,那么cot A= b/a(即邻边比对边) 。