已知f(x)=2/3x^3-2ax^2-3x(a∈R)
1.若f(x)在区间(-1,1)上为减函数,求实数a的取值范围2.若y=f(x)的极大值点与极小值点之差为2a-3,试求实数a的值...
1.若f(x)在区间(-1,1)上为减函数,求实数a的取值范围
2.若y=f(x)的极大值点与极小值点之差为2a-3,试求实数a的值 展开
2.若y=f(x)的极大值点与极小值点之差为2a-3,试求实数a的值 展开
3个回答
2011-02-01
展开全部
用导数做,对原函数f(x)=2/3x^3-2ax^2-3x求导,设其导数为h(x)
h(x)=f(x)的导数=2*x^2-4ax-3
原函数f(x)在区间(-1,1)上为减函数,说明其导数,即h(x)在区间(-1,1)上恒小于0.
即: 对任意x∈(-1,1) h(x)<0
而h(x)为开口向上的二次函数,即得
h(-1)<0 且 h(1)<0
解得:a∈(-1/4,1/4)
h(x)=f(x)的导数=2*x^2-4ax-3
原函数f(x)在区间(-1,1)上为减函数,说明其导数,即h(x)在区间(-1,1)上恒小于0.
即: 对任意x∈(-1,1) h(x)<0
而h(x)为开口向上的二次函数,即得
h(-1)<0 且 h(1)<0
解得:a∈(-1/4,1/4)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
1,见楼上解答,只是导函数应该是小于等于0恒成立,所以最后的答案应该是闭区间的;
2,极值点即为导函数的零点值,故两根之差的绝对值应该等于|2a-3|,建立等式有
(4a^2+6)^(1/2)=|2a-3|,解得a=1/4
2,极值点即为导函数的零点值,故两根之差的绝对值应该等于|2a-3|,建立等式有
(4a^2+6)^(1/2)=|2a-3|,解得a=1/4
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询