lnx的原函数是什么

 我来答
wjl371116
2017-07-14 · 知道合伙人教育行家
wjl371116
知道合伙人教育行家
采纳数:15457 获赞数:67423

向TA提问 私信TA
展开全部
求lnx的原函数就是求lnx的不定积分,即:
∫(lnx)dx=xlnx-∫xd(lnx)=xlnx-∫x(1/x)dx=xlnx-∫dx=xlnx-x+c
即lnx的原函数是:xlnx-x+c.
百度网友9fd5cf7
高粉答主

2018-09-26 · 繁杂信息太多,你要学会辨别
知道小有建树答主
回答量:286
采纳率:0%
帮助的人:10.6万
展开全部

y=xlnx-x+C

设f(x)为一个实变量实值函数,则f为奇函数若下列的方程对所有实数x都成立:

f(x) = f( - x) 或f( -x) = - f(x) 几何上,一个奇函数与原点对称,亦即其图在绕原点做180度旋转后不会改变。

奇函数的例子有x、sin(x)、sinh(x)和erf(x)。

设f(x)为一实变量实值函数,则f为偶函数若下列的方程对所有实数x都成立:

f(x) = f( - x) 几何上,一个偶函数会对y轴对称,亦即其图在对y轴为镜射后不会改变。

偶函数的例子有|x|、x^2、cos(x)和cosh(sec)(x)。

偶函数不可能是个双射映射。

扩展资料

函数的凹凸性

设函数f(x)在I上连续。如果对于I上的两点x1≠x2,恒有f((x1+x2)/2)≤(f(x1)+f(x2))/2,(f((x1+x2)/2)<(f(x1)+f(x2))/2)那么称f(x)是区间I上的(严格)凸函数;如果恒有f((x1+x2)/2)≥(f(x1)+f(x2))/2,(f((x1+x2)/2)>(f(x1)+f(x2))/2)那么称f(x)是区间上的(严格)凹函数。        一些资料中常常仅定义凹函数,凸函数则称上凹函数,凹函数则称下凹函数。

实函数和虚函数

实函数(Real function)是指定义域和值域均为实数域的函数。它的特性之一是一般可以在坐标上画出图形。

虚函数是面向对象程序设计中的一个重要的概念。当从父类中继承的时候,虚函数和被继承的函数具有相同的签名。但是在运行过程中,运行系统将根据对象的类型,自动地选择适当的具体实现运行。虚函数是面向对象编程实现多态的基本手段。

参考资料:函数的百度百科

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
邗耘贵从丹
2020-07-02 · TA获得超过1219个赞
知道小有建树答主
回答量:1599
采纳率:88%
帮助的人:7.4万
展开全部
01 (lnx-1)x+C

lnx的原函数:∫lnxdx=(lnx-1)x+C。C为积分常数。ln为一个算符,意思是求自然对数,即以e为底的对数。e是一个常数,等于2.71828183…,lnx可以理解为ln(x),即以e为底x的对数,也就是求e的多少次方等于x。lnx的原函数就是对lnx进行不定积分。∫lnxdx=xlnx-∫xdlnx=xlnx-x+C=(lnx-1)x+C。

在1614年开始有对数概念,约翰·纳皮尔以及Jost Bürgi(英语:Jost Bürgi)在6年后,分别发表了独立编制的对数表,当时通过对接近1的底数的大量乘幂运算,来找到指定范围和精度的对数和所对应的真数,当时还没出现有理数幂的概念。1742年William Jones(英语:William Jones (mathematician))才发表了幂指数概念。

按后来人的观点,Jost Bürgi的底数1.0001相当接近自然对数的底数e,而约翰·纳皮尔的底数0.99999999相当接近1/e。实际上不需要做开高次方这种艰难运算,约翰·纳皮尔用了20年时间进行相当于数百万次乘法的计算,Henry Briggs(英语:Henry Briggs (mathematician))建议纳皮尔改用10为底数未果,他用自己的方法于1624年部份完成了常用对数表的编制。

1649年,Alphonse Antonio de Sarasa(英语:Alphonse Antonio de Sarasa)将双曲线下的面积解释为对数。大约1665年,伊萨克·牛顿推广了二项式定理,他将展开并逐项积分,得到了自然对数的无穷级数。“自然对数”最早描述见于尼古拉斯·麦卡托在1668年出版的著作《Logarithmotechnia》中,他也独立发现了同样的级数,即自然对数的麦卡托级数。大约1730年,欧拉定义互为逆函数的指数函数和自然对数。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
定要平常心
2014-12-03 · TA获得超过1843个赞
知道小有建树答主
回答量:1251
采纳率:100%
帮助的人:898万
展开全部

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
百度网友ea116ba
2014-12-03 · TA获得超过1419个赞
知道小有建树答主
回答量:1132
采纳率:87%
帮助的人:299万
展开全部

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(3)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式