cosx的四次方的定积分怎么算… 10

 我来答
晴晴知识加油站
高能答主

2019-07-28 · 让梦想飞扬,让生命闪光。
晴晴知识加油站
采纳数:3595 获赞数:661323

向TA提问 私信TA
展开全部

解题过程如下:

原式=∫(cosx)^4 dx

=∫(1-sinx^2)cosx^2dx

=∫cosx^2dx-∫sinx^2cosx^2dx

=∫(1/2)(1+cos2x)x-∫(1/4)[(1-cos4x)/2]dx

=(x/2)+(1/4)sin2x-(x/8)+(1/32)sin4x+C

=3x/8+(1/4)sin2x+(1/32)sin4x+C

扩展资料

求函数积分的方法:

如果一个函数f在某个区间上黎曼可积,并且在此区间上大于等于零。那么它在这个区间上的积分也大于等于零。如果f勒贝格可积并且几乎总是大于等于零,那么它的勒贝格积分也大于等于零。

作为推论,如果两个  上的可积函数f和g相比,f(几乎)总是小于等于g,那么f的(勒贝格)积分也小于等于g的(勒贝格)积分。

函数的积分表示了函数在某个区域上的整体性质,改变函数某点的取值不会改变它的积分值。对于黎曼可积的函数,改变有限个点的取值,其积分不变。

对于勒贝格可积的函数,某个测度为0的集合上的函数值改变,不会影响它的积分值。如果两个函数几乎处处相同,那么它们的积分相同。如果对  中任意元素A,可积函数f在A上的积分总等于(大于等于)可积函数g在A上的积分,那么f几乎处处等于(大于等于)g。

如果在闭区间[a,b]上,无论怎样进行取样分割,只要它的子区间长度最大值足够小,函数f的黎曼和都会趋向于一个确定的值S,那么f在闭区间[a,b]上的黎曼积分存在,并且定义为黎曼和的极限S。

设是函数f(x)的一个原函数,我们把函数f(x)的所有原函数F(x)+C(C为任意常数)叫做函数f(x)的不定积分,记作,即∫f(x)dx=F(x)+C。

其中∫叫做积分号,f(x)叫做被积函数,x叫做积分变量,f(x)dx叫做被积式,C叫做积分常数,求已知函数不定积分的过程叫做对这个函数进行积分。

轮看殊O
高粉答主

2019-05-12 · 说的都是干货,快来关注
知道大有可为答主
回答量:2.6万
采纳率:99%
帮助的人:759万
展开全部

答案是(3/8)x+(1/4)sin2x+(1/32)sin4x+C

如图所示:

具体步骤如下:

(cosx)^4

=cos⁴x

=(cos²x)²

=[(1+cos2x)/2]²

=(1/4)(1+2cos2x+cos²2x)

=(1/4)+(1/2)cos2x+(1/8)(1+cos4x)

=(3/8)+(1/2)cos2x+(1/8)cos4x∫cos⁴xdx

=∫[(3/8)+(1/2)cos2x+(1/8)cos4x]dx

=(3/8)x+(1/4)sin2x+(1/32)sin4x+C

扩展资料

常用积分公式:

1)∫0dx=c 

2)∫x^udx=(x^(u+1))/(u+1)+c

3)∫1/xdx=ln|x|+c

4)∫a^xdx=(a^x)/lna+c

5)∫e^xdx=e^x+c

6)∫sinxdx=-cosx+c

7)∫cosxdx=sinx+c

8)∫1/(cosx)^2dx=tanx+c

9)∫1/(sinx)^2dx=-cotx+c

10)∫1/√(1-x^2) dx=arcsinx+c

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
datong212
高粉答主

2015-11-29 · 繁杂信息太多,你要学会辨别
知道大有可为答主
回答量:1.7万
采纳率:84%
帮助的人:2192万
展开全部

追答

应该没问题了吧
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
Michgenius
2017-06-15 · 超过19用户采纳过TA的回答
知道答主
回答量:42
采纳率:0%
帮助的人:23.9万
展开全部
先算不定积分
可以把cos平方换成1-sin平方
之后cos平方乘sin平方可以用sin(a+a) = 2sin(a)cos(a) 来做
不会再问
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
百度网友6fbd67f
推荐于2017-06-15 · 超过15用户采纳过TA的回答
知道答主
回答量:82
采纳率:100%
帮助的人:33万
展开全部
∫ cosx^4dx=∫ cosx^2dsinx^2=∫ (1-sinx^2)dsinx^2
=∫ dsinx^2-∫sinx^2 dsinx^2=∫cosx^2 dx-(sinx^3)/3
=1/4∫(cos2x+1) d2x-(sinx^3)/3
=sin2x/4+x/2-(sinx^3)/3
本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(4)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式