一道高二数学题

已知函数f(x)=4x2-2(p-2)x-2p2-p+1在区间[-1,1]上至少存在一个实数c,使得f(c)>0.求实数p的取值范围。希望大家帮帮忙!... 已知函数f(x)=4x2-2(p-2)x-2p2-p+1在区间[-1,1]上至少存在一个实数c,使得f(c)>0.求实数p的取值范围。

希望大家帮帮忙!
展开
zqs626290
2011-02-18 · TA获得超过3.1万个赞
知道大有可为答主
回答量:1.6万
采纳率:66%
帮助的人:5800万
展开全部
解:函数f(x)=4x²-2(p-2)x-2p²-p+1
=[2x+(p+1)][2x-(2p-1)].
∴函数f(x)的两个零点为:
X1=-(p+1)/2, x2=(2p-1)/2.
数形结合可知,当x1≤-1<1≤x2时,
或当x2≤-1<1≤x1时,
函数f(x)在区间[-1,1]上,恒有f(x) ≤0.
【1】不等式x1≤-1<1≤x2就是:-(p+1)/2≤-1<1≤(2p-1)/2.
解得:p≥3/2.
【2】不等式x2≤-1<1≤x1就是:(2p-1)/2≤-1<1≤-(p+1)/2
解得:p≤-3.
综上可知,在区间(-∞,-3] ∪[3/2,+ ∞)上,恒有f(x) ≤0.
∴在区间(-3,3/2)上,至少存在一个实数c,满足f(c) >0.
∴p∈(-3,3/2).
xiaoyuemt
2011-02-18 · TA获得超过1.6万个赞
知道大有可为答主
回答量:3202
采纳率:64%
帮助的人:1675万
展开全部
f(x)=4x2-2(p-2)x-2p2-p+1
开口向上,在区间上只要两个端点的值有一个大于0,那么在 就肯定存在c,使得 f(c)>0
f(1)=4-2(p-2)-2p^2-p+1=9-3p-2p^2>0
(2p-3)(p+3)<0
所以 -3<p<3/2
f(-1)=4+2(p-2)-2p^2-p+1=p-2p^2+1>0
即 (p+1)(2p-1)<0
所以 -1<p<1/2
只要有一个点的值大于0,就会存在满足要求的c点,所以p的范围是它们的并集,所以:
p∈(-3,3/2)
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
AFK的人
2011-02-18 · TA获得超过175个赞
知道答主
回答量:245
采纳率:0%
帮助的人:86.7万
展开全部
答案是:p>1或p<-2。
假设f(x)>0在[-1,1]无解。则f(-1)<=0,且f(1)<=0。
代入方程,求出p的取值范围是-2<=p<=1。
所以取反,即开始的答案。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式