如图,在平面直角坐标系中,抛物线y=ax²+bx+c的对称轴为直线x=-3/2,抛物线与x轴的交点为A、B,

与y轴的交点为c,抛物线的顶点为M,直线MC的解析式是y=3\4x-2(1)求顶点M的坐标(2)求抛物线的解析式(3)以线段AB为直径做圆P,判断直线MC与圆P的位置关系... 与y轴的交点为c,抛物线的顶点为M,直线MC的解析式是y=3\4x-2
(1)求顶点M的坐标(2)求抛物线的解析式(3)以线段AB为直径做圆P,判断直线MC与圆P的位置关系,并证明你的结论
展开
唐卫公
推荐于2016-12-01 · TA获得超过3.7万个赞
知道大有可为答主
回答量:9440
采纳率:76%
帮助的人:4575万
展开全部
(1)顶点在对称轴 x= -3/2上
MC的解析式是y= (3/4)x - 2
x = -3/2, y = -9/8 -2 = -25/8
M(-3/2, -25/8)

(2) y = ax²+bx+c = a[x + b/(2a)]²+ c -b^2/(4a)
对称轴为x = -b/(2a) = -3/2, b= 3a (a)
C(0, -2)
-2 = 0 + 0 +c
c = -2 (b)
顶点M纵誉态坐标 c -b^2/(4a) = -25/8 (c)
(a)(b)(c): a = 1/2, b = 3/2
求抛物线的解析式: y = (1/庆粗源2)x² + (3/2)x - 2

(3) y = (1/2)x² + (3/2)x - 2 = 0
(x+4)(x-1)= 0
A(-4, 0), B(1, 0)
半径 = (1+4)/2 = 5/2
圆心P(-3/2, 0)
直线MC的解析式是y= (3/4)x - 2, 3x - 4y - 8 = 0
圆心和直线MC的距离: |3(-3/2) - 4*0 -8|/√(3²+4²) = (25/2)/5 = 5/2, 等于半径, 直线MC与圆凳大相切
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式