计算(1+根号3i/1-根号3i)^9 5
1个回答
展开全部
解析:
(1-根号3i)^10
=2^10 ×(1/2 -根号3/2 ×i)^10
=2^10 ×[cos(-π/3)+sin(-π/3)×i]^10
=2^10 ×[cos(-10π/3)+sin(-10π/3)×i]
=2^10 ×[cos(2π/3)+sin(2π/3)×i]
=2^10 ×(-1/2+根号3/2×i )
而 (1+根号3i)^10
=2^10 ×(1/2 +根号3/2 ×i)^10
=2^10 ×[cos(π/3)+sin(π/3)×i]^10
=2^10 ×[cos(10π/3)+sin(10π/3)×i]
=2^10 ×[cos(4π/3)+sin(4π/3)×i]
=2^10 ×[-cos(π/3)-sin(π/3)×i]
=2^10 ×(-1/2-根号3/2×i )
所以:
(1-根号3i)^10-(1+根号3i)^10
=2^10 ×(-1/2+根号3/2×i )-2^10 ×(-1/2-根号3/2×i )
=2^10 ×[(-1/2+根号3/2×i )-(-1/2-根号3/2×i )]
=2^10 ×根号3×i
=1024根号3×i
(1-根号3i)^10
=2^10 ×(1/2 -根号3/2 ×i)^10
=2^10 ×[cos(-π/3)+sin(-π/3)×i]^10
=2^10 ×[cos(-10π/3)+sin(-10π/3)×i]
=2^10 ×[cos(2π/3)+sin(2π/3)×i]
=2^10 ×(-1/2+根号3/2×i )
而 (1+根号3i)^10
=2^10 ×(1/2 +根号3/2 ×i)^10
=2^10 ×[cos(π/3)+sin(π/3)×i]^10
=2^10 ×[cos(10π/3)+sin(10π/3)×i]
=2^10 ×[cos(4π/3)+sin(4π/3)×i]
=2^10 ×[-cos(π/3)-sin(π/3)×i]
=2^10 ×(-1/2-根号3/2×i )
所以:
(1-根号3i)^10-(1+根号3i)^10
=2^10 ×(-1/2+根号3/2×i )-2^10 ×(-1/2-根号3/2×i )
=2^10 ×[(-1/2+根号3/2×i )-(-1/2-根号3/2×i )]
=2^10 ×根号3×i
=1024根号3×i
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询